IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v570y2019i7762d10.1038_s41586-019-1261-9.html
   My bibliography  Save this article

Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons

Author

Listed:
  • Ben Engelhard

    (Princeton University
    Princeton University)

  • Joel Finkelstein

    (Princeton University
    Princeton University)

  • Julia Cox

    (Princeton University)

  • Weston Fleming

    (Princeton University)

  • Hee Jae Jang

    (Princeton University)

  • Sharon Ornelas

    (Princeton University)

  • Sue Ann Koay

    (Princeton University)

  • Stephan Y. Thiberge

    (Princeton University
    Princeton University)

  • Nathaniel D. Daw

    (Princeton University
    Princeton University)

  • David W. Tank

    (Princeton University
    Princeton University)

  • Ilana B. Witten

    (Princeton University
    Princeton University
    Princeton University)

Abstract

There is increased appreciation that dopamine neurons in the midbrain respond not only to reward1 and reward-predicting cues1,2, but also to other variables such as the distance to reward3, movements4–9 and behavioural choices10,11. An important question is how the responses to these diverse variables are organized across the population of dopamine neurons. Whether individual dopamine neurons multiplex several variables, or whether there are subsets of neurons that are specialized in encoding specific behavioural variables remains unclear. This fundamental question has been difficult to resolve because recordings from large populations of individual dopamine neurons have not been performed in a behavioural task with sufficient complexity to examine these diverse variables simultaneously. Here, to address this gap, we used two-photon calcium imaging through an implanted lens to record the activity of more than 300 dopamine neurons from the ventral tegmental area of the mouse midbrain during a complex decision-making task. As mice navigated in a virtual-reality environment, dopamine neurons encoded an array of sensory, motor and cognitive variables. These responses were functionally clustered, such that subpopulations of neurons transmitted information about a subset of behavioural variables, in addition to encoding reward. These functional clusters were spatially organized, with neighbouring neurons more likely to be part of the same cluster. Together with the topography between dopamine neurons and their projections, this specialization and anatomical organization may aid downstream circuits in correctly interpreting the wide range of signals transmitted by dopamine neurons.

Suggested Citation

  • Ben Engelhard & Joel Finkelstein & Julia Cox & Weston Fleming & Hee Jae Jang & Sharon Ornelas & Sue Ann Koay & Stephan Y. Thiberge & Nathaniel D. Daw & David W. Tank & Ilana B. Witten, 2019. "Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons," Nature, Nature, vol. 570(7762), pages 509-513, June.
  • Handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1261-9
    DOI: 10.1038/s41586-019-1261-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1261-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1261-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin W. Hoy & David R. Quiroga-Martinez & Eduardo Sandoval & David King-Stephens & Kenneth D. Laxer & Peter Weber & Jack J. Lin & Robert T. Knight, 2023. "Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Han-Tao Li & Paulius Viskaitis & Eva Bracey & Daria Peleg-Raibstein & Denis Burdakov, 2024. "Transient targeting of hypothalamic orexin neurons alleviates seizures in a mouse model of epilepsy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Min Jung Kim & Daniel J. Gibson & Dan Hu & Tomoko Yoshida & Emily Hueske & Ayano Matsushima & Ara Mahar & Cynthia J. Schofield & Patlapa Sompolpong & Kathy T. Tran & Lin Tian & Ann M. Graybiel, 2024. "Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Jennifer Isaac & Sonia Corbett Karkare & Hymavathy Balasubramanian & Nicholas Schappaugh & Jarildy Larimar Javier & Maha Rashid & Malavika Murugan, 2024. "Sex differences in neural representations of social and nonsocial reward in the medial prefrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    5. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Kyuhyun Choi & Eugenio Piasini & Edgar Díaz-Hernández & Luigim Vargas Cifuentes & Nathan T. Henderson & Elizabeth N. Holly & Manivannan Subramaniyan & Charles R. Gerfen & Marc V. Fuccillo, 2023. "Distributed processing for value-based choice by prelimbic circuits targeting anterior-posterior dorsal striatal subregions in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Michele N. Insanally & Badr F. Albanna & Jade Toth & Brian DePasquale & Saba Shokat Fadaei & Trisha Gupta & Olivia Lombardi & Kishore Kuchibhotla & Kanaka Rajan & Robert C. Froemke, 2024. "Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Torben Ott & Anna Marlina Stein & Andreas Nieder, 2023. "Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Jérémie Naudé & Matthieu X. B. Sarazin & Sarah Mondoloni & Bernadette Hannesse & Eléonore Vicq & Fabrice Amegandjin & Alexandre Mourot & Philippe Faure & Bruno Delord, 2024. "Dopamine builds and reveals reward-associated latent behavioral attractors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1261-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.