Author
Listed:
- Céline Guervilly
(Newcastle University)
- Philippe Cardin
(Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre)
- Nathanaël Schaeffer
(Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre)
Abstract
Convection is a fundamental physical process in the fluid cores of planets. It is the primary transport mechanism for heat and chemical species and the primary energy source for planetary magnetic fields. Key properties of convection—such as the characteristic flow velocity and length scale—are poorly quantified in planetary cores owing to the strong dependence of these properties on planetary rotation, buoyancy driving and magnetic fields, all of which are difficult to model using realistic conditions. In the absence of strong magnetic fields, the convective flows of the core are expected to be in a regime of rapidly rotating turbulence1, which remains largely unexplored. Here we use a combination of non-magnetic numerical models designed to explore this regime to show that the convective length scale becomes independent of the viscosity when realistic parameter values are approached and is entirely determined by the flow velocity and the planetary rotation. The velocity decreases very rapidly at smaller scales, so this turbulent convective length scale is a lower limit for the energy-carrying length scales in the flow. Using this approach, we can model realistically the dynamics of small non-magnetic cores such as the Moon. Although modelling the conditions of larger planetary cores remains out of reach, the fact that the turbulent convective length scale is independent of the viscosity allows a reliable extrapolation to these objects. For the Earth’s core conditions, we find that the turbulent convective length scale in the absence of magnetic fields would be about 30 kilometres, which is orders of magnitude larger than the ten-metre viscous length scale. The need to resolve the numerically inaccessible viscous scale could therefore be relaxed in future more realistic geodynamo simulations, at least in weakly magnetized regions.
Suggested Citation
Céline Guervilly & Philippe Cardin & Nathanaël Schaeffer, 2019.
"Turbulent convective length scale in planetary cores,"
Nature, Nature, vol. 570(7761), pages 368-371, June.
Handle:
RePEc:nat:nature:v:570:y:2019:i:7761:d:10.1038_s41586-019-1301-5
DOI: 10.1038/s41586-019-1301-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7761:d:10.1038_s41586-019-1301-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.