IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v570y2019i7759d10.1038_s41586-019-1258-4.html
   My bibliography  Save this article

Surface erosion events controlled the evolution of plate tectonics on Earth

Author

Listed:
  • Stephan V. Sobolev

    (Section of Geodynamic Modeling
    University of Potsdam)

  • Michael Brown

    (Department of Geology, University of Maryland)

Abstract

Plate tectonics is among the most important geological processes on Earth, but its emergence and evolution remain unclear. Here we extrapolate models of present-day plate tectonics to the past and propose that since about three billion years ago the rise of continents and the accumulation of sediments at continental edges and in trenches has provided lubrication for the stabilization of subduction and has been crucial in the development of plate tectonics on Earth. We conclude that the two largest surface erosion and subduction lubrication events occurred after the Palaeoproterozoic Huronian global glaciations (2.45 to 2.2 billion years ago), leading to the formation of the Columbia supercontinent, and after the Neoproterozoic ‘snowball’ Earth glaciations (0.75 to 0.63 billion years ago). The snowball Earth event followed the ‘boring billion’—a period of reduced plate tectonic activity about 1.75 to 0.75 billion years ago that was probably caused by a shortfall of sediments in trenches—and it kick-started the modern episode of active plate tectonics.

Suggested Citation

  • Stephan V. Sobolev & Michael Brown, 2019. "Surface erosion events controlled the evolution of plate tectonics on Earth," Nature, Nature, vol. 570(7759), pages 52-57, June.
  • Handle: RePEc:nat:nature:v:570:y:2019:i:7759:d:10.1038_s41586-019-1258-4
    DOI: 10.1038/s41586-019-1258-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1258-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1258-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Huang & Tim E. Johnson & Simon A. Wilde & Ali Polat & Dong Fu & Timothy Kusky, 2022. "Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7759:d:10.1038_s41586-019-1258-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.