IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7758d10.1038_s41586-019-1190-7.html
   My bibliography  Save this article

Sensory experience remodels genome architecture in neural circuit to drive motor learning

Author

Listed:
  • Tomoko Yamada

    (Washington University School of Medicine
    University of Tsukuba)

  • Yue Yang

    (Washington University School of Medicine
    Northwestern University)

  • Pamela Valnegri

    (Washington University School of Medicine)

  • Ivan Juric

    (Cleveland Clinic Foundation)

  • Armen Abnousi

    (Cleveland Clinic Foundation)

  • Kelly H. Markwalter

    (Washington University School of Medicine
    MD-PhD Program, Washington University School of Medicine)

  • Arden N. Guthrie

    (Washington University School of Medicine)

  • Abigail Godec

    (Washington University School of Medicine)

  • Anna Oldenborg

    (Washington University School of Medicine)

  • Ming Hu

    (Cleveland Clinic Foundation)

  • Timothy E. Holy

    (Washington University School of Medicine)

  • Azad Bonni

    (Washington University School of Medicine)

Abstract

Neuronal-activity-dependent transcription couples sensory experience to adaptive responses of the brain including learning and memory. Mechanisms of activity-dependent gene expression including alterations of the epigenome have been characterized1–8. However, the fundamental question of whether sensory experience remodels chromatin architecture in the adult brain in vivo to induce neural code transformations and learning and memory remains to be addressed. Here we use in vivo calcium imaging, optogenetics and pharmacological approaches to show that granule neuron activation in the anterior dorsal cerebellar vermis has a crucial role in a delay tactile startle learning paradigm in mice. Of note, using large-scale transcriptome and chromatin profiling, we show that activation of the motor-learning-linked granule neuron circuit reorganizes neuronal chromatin including through long-distance enhancer–promoter and transcriptionally active compartment interactions to orchestrate distinct granule neuron gene expression modules. Conditional CRISPR knockout of the chromatin architecture regulator cohesin in anterior dorsal cerebellar vermis granule neurons in adult mice disrupts enhancer–promoter interactions, activity-dependent transcription and motor learning. These findings define how sensory experience patterns chromatin architecture and neural circuit coding in the brain to drive motor learning.

Suggested Citation

  • Tomoko Yamada & Yue Yang & Pamela Valnegri & Ivan Juric & Armen Abnousi & Kelly H. Markwalter & Arden N. Guthrie & Abigail Godec & Anna Oldenborg & Ming Hu & Timothy E. Holy & Azad Bonni, 2019. "Sensory experience remodels genome architecture in neural circuit to drive motor learning," Nature, Nature, vol. 569(7758), pages 708-713, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7758:d:10.1038_s41586-019-1190-7
    DOI: 10.1038/s41586-019-1190-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1190-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1190-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devin Rocks & Mamta Shukla & Laila Ouldibbat & Silvia C. Finnemann & Achyuth Kalluchi & M. Jordan Rowley & Marija Kundakovic, 2022. "Sex-specific multi-level 3D genome dynamics in the mouse brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7758:d:10.1038_s41586-019-1190-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.