IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7754d10.1038_s41586-019-1151-1.html
   My bibliography  Save this article

Synthesis and breakdown of universal metabolic precursors promoted by iron

Author

Listed:
  • Kamila B. Muchowska

    (Université de Strasbourg, CNRS, ISIS)

  • Sreejith J. Varma

    (Université de Strasbourg, CNRS, ISIS)

  • Joseph Moran

    (Université de Strasbourg, CNRS, ISIS)

Abstract

Life builds its molecules from carbon dioxide (CO2) and breaks them back down again through the intermediacy of just five metabolites, which are the universal hubs of biochemistry1. However, it is unclear how core biological metabolism began and why it uses the intermediates, reactions and pathways that it does. Here we describe a purely chemical reaction network promoted by ferrous iron, in which aqueous pyruvate and glyoxylate—two products of abiotic CO2 reduction2–4—build up 9 of the 11 intermediates of the biological Krebs (or tricarboxylic acid) cycle, including all 5 universal metabolic precursors. The intermediates simultaneously break down to CO2 in a life-like regime that resembles biological anabolism and catabolism5. Adding hydroxylamine6–8 and metallic iron into the system produces four biological amino acids in a manner that parallels biosynthesis. The observed network overlaps substantially with the Krebs and glyoxylate cycles9,10, and may represent a prebiotic precursor to these core metabolic pathways.

Suggested Citation

  • Kamila B. Muchowska & Sreejith J. Varma & Joseph Moran, 2019. "Synthesis and breakdown of universal metabolic precursors promoted by iron," Nature, Nature, vol. 569(7754), pages 104-107, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7754:d:10.1038_s41586-019-1151-1
    DOI: 10.1038/s41586-019-1151-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1151-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1151-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Wang & Chaojiang Zhang & Joshua H. Marks & Mikhail M. Evseev & Oleg V. Kuznetsov & Ivan O. Antonov & Ralf I. Kaiser, 2024. "Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Weishu Zhao & Bozitao Zhong & Lirong Zheng & Pan Tan & Yinzhao Wang & Hao Leng & Nicolas Souza & Zhuo Liu & Liang Hong & Xiang Xiao, 2022. "Proteome-wide 3D structure prediction provides insights into the ancestral metabolism of ancient archaea and bacteria," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Sean F. Jordan & Ioannis Ioannou & Hanadi Rammu & Aaron Halpern & Lara K. Bogart & Minkoo Ahn & Rafaela Vasiliadou & John Christodoulou & Amandine Maréchal & Nick Lane, 2021. "Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7754:d:10.1038_s41586-019-1151-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.