IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7749d10.1038_s41586-019-1040-7.html
   My bibliography  Save this article

Error mitigation extends the computational reach of a noisy quantum processor

Author

Listed:
  • Abhinav Kandala

    (IBM T. J. Watson Research Center)

  • Kristan Temme

    (IBM T. J. Watson Research Center)

  • Antonio D. Córcoles

    (IBM T. J. Watson Research Center)

  • Antonio Mezzacapo

    (IBM T. J. Watson Research Center)

  • Jerry M. Chow

    (IBM T. J. Watson Research Center)

  • Jay M. Gambetta

    (IBM T. J. Watson Research Center)

Abstract

Quantum computation, a paradigm of computing that is completely different from classical methods, benefits from theoretically proved speed-ups for certain problems and can be used to study the properties of quantum systems1. Yet, because of the inherently fragile nature of the physical computing elements (qubits), achieving quantum advantages over classical computation requires extremely low error rates for qubit operations, as well as substantial physical qubits, to realize fault tolerance via quantum error correction2,3. However, recent theoretical work4,5 has shown that the accuracy of computation (based on expectation values of quantum observables) can be enhanced through an extrapolation of results from a collection of experiments of varying noise. Here we demonstrate this error mitigation protocol on a superconducting quantum processor, enhancing its computational capability, with no additional hardware modifications. We apply the protocol to mitigate errors in canonical single- and two-qubit experiments and then extend its application to the variational optimization6–8 of Hamiltonians for quantum chemistry and magnetism9. We effectively demonstrate that the suppression of incoherent errors helps to achieve an otherwise inaccessible level of accuracy in the variational solutions using our noisy processor. These results demonstrate that error mitigation techniques will enable substantial improvements in the capabilities of near-term quantum computing hardware.

Suggested Citation

  • Abhinav Kandala & Kristan Temme & Antonio D. Córcoles & Antonio Mezzacapo & Jerry M. Chow & Jay M. Gambetta, 2019. "Error mitigation extends the computational reach of a noisy quantum processor," Nature, Nature, vol. 567(7749), pages 491-495, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7749:d:10.1038_s41586-019-1040-7
    DOI: 10.1038/s41586-019-1040-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1040-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1040-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Taras Golod & Lise Morlet-Decarnin & Vladimir M. Krasnov, 2023. "Word and bit line operation of a 1 × 1 μm2 superconducting vortex-based memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7749:d:10.1038_s41586-019-1040-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.