IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7748d10.1038_s41586-019-1020-y.html
   My bibliography  Save this article

Discovery of a pathway for terminal-alkyne amino acid biosynthesis

Author

Listed:
  • J. A. Marchand

    (University of California)

  • M. E. Neugebauer

    (University of California)

  • M. C. Ing

    (University of California)

  • C.-I. Lin

    (University of California)

  • J. G. Pelton

    (University of California)

  • M. C. Y. Chang

    (University of California
    University of California)

Abstract

Living systems can generate an enormous range of cellular functions, from mechanical infrastructure and signalling networks to enzymatic catalysis and information storage, using a notably limited set of chemical functional groups. This observation is especially notable when compared to the breadth of functional groups used as the basis for similar functions in synthetically derived small molecules and materials. The relatively small cross-section between biological and synthetic reactivity space forms the foundation for the development of bioorthogonal chemistry, in which the absence of a pair of reactive functional groups within the cell allows for a selective in situ reaction1–4. However, biologically ‘rare’ functional groups, such as the fluoro5, chloro6,7, bromo7,8, phosphonate9, enediyne10,11, cyano12, diazo13, alkene14 and alkyne15–17 groups, continue to be discovered in natural products made by plants, fungi and microorganisms, which offers a potential route to genetically encode the endogenous biosynthesis of bioorthogonal reagents within living organisms. In particular, the terminal alkyne has found broad utility via the Cu(i)-catalysed azide-alkyne cycloaddition ‘click’ reaction18. Here we report the discovery and characterization of a unique pathway to produce a terminal alkyne-containing amino acid in the bacterium Streptomyces cattleya. We found that l-lysine undergoes an unexpected reaction sequence that includes halogenation, oxidative C–C bond cleavage and triple bond formation through a putative allene intermediate. This pathway offers the potential for de novo cellular production of halo-, alkene- and alkyne-labelled proteins and natural products from glucose for a variety of downstream applications.

Suggested Citation

  • J. A. Marchand & M. E. Neugebauer & M. C. Ing & C.-I. Lin & J. G. Pelton & M. C. Y. Chang, 2019. "Discovery of a pathway for terminal-alkyne amino acid biosynthesis," Nature, Nature, vol. 567(7748), pages 420-424, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7748:d:10.1038_s41586-019-1020-y
    DOI: 10.1038/s41586-019-1020-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1020-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1020-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Li & Jian-Wen Huang & Longhai Dai & Haibin Zheng & Si Dai & Qishan Zhang & Licheng Yao & Yunyun Yang & Yu Yang & Jian Min & Rey-Ting Guo & Chun-Chi Chen, 2023. "The structural and functional investigation into an unusual nitrile synthase," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Bob J. Ignacio & Jelmer Dijkstra & Natalia Mora & Erik F. J. Slot & Margot J. Weijsten & Erik Storkebaum & Michiel Vermeulen & Kimberly M. Bonger, 2023. "THRONCAT: metabolic labeling of newly synthesized proteins using a bioorthogonal threonine analog," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7748:d:10.1038_s41586-019-1020-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.