IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7746d10.1038_s41586-019-0990-0.html
   My bibliography  Save this article

Structural basis for KCTD-mediated rapid desensitization of GABAB signalling

Author

Listed:
  • Sanduo Zheng

    (Blavatnik Institute, Harvard Medical School)

  • Nohely Abreu

    (Weill Cornell Medicine)

  • Joshua Levitz

    (Weill Cornell Medicine)

  • Andrew C. Kruse

    (Blavatnik Institute, Harvard Medical School)

Abstract

The GABAB (γ-aminobutyric acid type B) receptor is one of the principal inhibitory neurotransmitter receptors in the brain, and it signals through heterotrimeric G proteins to activate a variety of effectors, including G-protein-coupled inwardly rectifying potassium channels (GIRKs)1,2. GABAB-receptor signalling is tightly regulated by auxiliary subunits called KCTDs, which control the kinetics of GIRK activation and desensitization3–5. However, the mechanistic basis for KCTD modulation of GABAB signalling remains incompletely understood. Here, using a combination of X-ray crystallography, electron microscopy, and functional and biochemical experiments, we reveal the molecular details of KCTD binding to both GABAB receptors and G-protein βγ subunits. KCTDs associate with the receptor by forming an asymmetric pentameric ring around a region of the receptor carboxy-terminal tail, while a second KCTD domain, H1, engages in a symmetric interaction with five copies of Gβγ in which the G-protein subunits also interact directly with one another. We further show that KCTD binding to Gβγ is highly cooperative, defining a model in which KCTD proteins cooperatively strip G proteins from GIRK channels to induce rapid desensitization following receptor activation. These results provide a framework for understanding the molecular basis for the precise temporal control of GABAB signalling by KCTD proteins.

Suggested Citation

  • Sanduo Zheng & Nohely Abreu & Joshua Levitz & Andrew C. Kruse, 2019. "Structural basis for KCTD-mediated rapid desensitization of GABAB signalling," Nature, Nature, vol. 567(7746), pages 127-131, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7746:d:10.1038_s41586-019-0990-0
    DOI: 10.1038/s41586-019-0990-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0990-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0990-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Teng & Sijia Chen & Yingying Nie & Peng Xiao & Xiao Yu & Zhenhua Shao & Sanduo Zheng, 2022. "Ligand recognition and biased agonism of the D1 dopamine receptor," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7746:d:10.1038_s41586-019-0990-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.