Author
Listed:
- C. Flühmann
(ETH Zürich)
- T. L. Nguyen
(ETH Zürich)
- M. Marinelli
(ETH Zürich)
- V. Negnevitsky
(ETH Zürich)
- K. Mehta
(ETH Zürich)
- J. P. Home
(ETH Zürich)
Abstract
The stable operation of quantum computers will rely on error correction, in which single quantum bits of information are stored redundantly in the Hilbert space of a larger system. Such encoded qubits are commonly based on arrays of many physical qubits, but can also be realized using a single higher-dimensional quantum system, such as a harmonic oscillator1–3. In such a system, a powerful encoding has been devised based on periodically spaced superpositions of position eigenstates4–6. Various proposals have been made for realizing approximations to such states, but these have thus far remained out of reach7–11. Here we demonstrate such an encoded qubit using a superposition of displaced squeezed states of the harmonic motion of a single trapped 40Ca+ ion, controlling and measuring the mechanical oscillator through coupling to an ancillary internal-state qubit12. We prepare and reconstruct logical states with an average squared fidelity of 87.3 ± 0.7 per cent. Also, we demonstrate a universal logical single-qubit gate set, which we analyse using process tomography. For Pauli gates we reach process fidelities of about 97 per cent, whereas for continuous rotations we use gate teleportation and achieve fidelities of approximately 89 per cent. This control method opens a route for exploring continuous variable error correction as well as hybrid quantum information schemes using both discrete and continuous variables13. The code states also have direct applications in quantum sensing, allowing simultaneous measurement of small displacements in both position and momentum14,15.
Suggested Citation
C. Flühmann & T. L. Nguyen & M. Marinelli & V. Negnevitsky & K. Mehta & J. P. Home, 2019.
"Encoding a qubit in a trapped-ion mechanical oscillator,"
Nature, Nature, vol. 566(7745), pages 513-517, February.
Handle:
RePEc:nat:nature:v:566:y:2019:i:7745:d:10.1038_s41586-019-0960-6
DOI: 10.1038/s41586-019-0960-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7745:d:10.1038_s41586-019-0960-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.