IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7744d10.1038_s41586-019-0924-x.html
   My bibliography  Save this article

Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution

Author

Listed:
  • Takahiro Masuda

    (University of Freiburg)

  • Roman Sankowski

    (University of Freiburg
    University of Freiburg)

  • Ori Staszewski

    (University of Freiburg)

  • Chotima Böttcher

    (Charité – Universitätsmedizin Berlin)

  • Lukas Amann

    (University of Freiburg
    University of Freiburg)

  • Sagar

    (Max Planck Institute of Immunobiology and Epigenetics (MPI-IE))

  • Christian Scheiwe

    (University of Freiburg)

  • Stefan Nessler

    (University Medical Center Göttingen)

  • Patrik Kunz

    (University Medical Center Göttingen)

  • Geert Loo

    (VIB Center for Inflammation Research
    Ghent University)

  • Volker Arnd Coenen

    (University of Freiburg)

  • Peter Christoph Reinacher

    (University of Freiburg)

  • Anna Michel

    (University Hospital Essen)

  • Ulrich Sure

    (University Hospital Essen)

  • Ralf Gold

    (Ruhr University Bochum)

  • Dominic Grün

    (Max Planck Institute of Immunobiology and Epigenetics (MPI-IE))

  • Josef Priller

    (Charité – Universitätsmedizin Berlin
    DZNE
    UK DRI, University of Edinburgh)

  • Christine Stadelmann

    (University Medical Center Göttingen)

  • Marco Prinz

    (University of Freiburg
    Signalling Research Centres BIOSS and CIBSS, University of Freiburg
    University of Freiburg)

Abstract

Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system1–4. These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies.

Suggested Citation

  • Takahiro Masuda & Roman Sankowski & Ori Staszewski & Chotima Böttcher & Lukas Amann & Sagar & Christian Scheiwe & Stefan Nessler & Patrik Kunz & Geert Loo & Volker Arnd Coenen & Peter Christoph Reinac, 2019. "Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution," Nature, Nature, vol. 566(7744), pages 388-392, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7744:d:10.1038_s41586-019-0924-x
    DOI: 10.1038/s41586-019-0924-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0924-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0924-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    2. Thanh Loc Nguyen & Youngjin Choi & Jihye Im & Hyunsu Shin & Ngoc Man Phan & Min Kyung Kim & Seung Woo Choi & Jaeyun Kim, 2022. "Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Shannon Tansley & Sonali Uttam & Alba Ureña Guzmán & Moein Yaqubi & Alain Pacis & Marc Parisien & Haley Deamond & Calvin Wong & Oded Rabau & Nicole Brown & Lisbet Haglund & Jean Ouellet & Carlo Santag, 2022. "Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Tian Zhou & Yuxin Li & Xiaoyu Li & Fanzhuo Zeng & Yanxia Rao & Yang He & Yafei Wang & Meizhen Liu & Dali Li & Zhen Xu & Xin Zhou & Siling Du & Fugui Niu & Jiyun Peng & Xifan Mei & Sheng-Jian Ji & Yous, 2022. "Microglial debris is cleared by astrocytes via C4b-facilitated phagocytosis and degraded via RUBICON-dependent noncanonical autophagy in mice," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    5. Jake R. Thomas & Anna Appios & Emily F. Calderbank & Nagisa Yoshida & Xiaohui Zhao & Russell S. Hamilton & Ashley Moffett & Andrew Sharkey & Elisa Laurenti & Courtney W. Hanna & Naomi McGovern, 2023. "Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Suvra Nath & Jose C. Martínez Santamaría & Yu-Hsuan Chu & James S. Choi & Pasquale Conforti & Jia-Di Lin & Roman Sankowski & Lukas Amann & Christos Galanis & Kexin Wu & Sachin S. Deshpande & Andreas V, 2024. "Interaction between subventricular zone microglia and neural stem cells impacts the neurogenic response in a mouse model of cortical ischemic stroke," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Aletta M. R. Bosch & Marlijn Poel & Nina L. Fransen & Maria C. J. Vincenten & Anneleen M. Bobeldijk & Aldo Jongejan & Hendrik J. Engelenburg & Perry D. Moerland & Joost Smolders & Inge Huitinga & Jörg, 2024. "Profiling of microglia nodules in multiple sclerosis reveals propensity for lesion formation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Zu-Qiang Liu & Hao Dai & Lu Yao & Wei-Feng Chen & Yun Wang & Li-Yun Ma & Xiao-Qing Li & Sheng-Li Lin & Meng-Jiang He & Ping-Ting Gao & Xin-Yang Liu & Jia-Xin Xu & Xiao-Yue Xu & Ke-Hao Wang & Li Wang &, 2023. "A single-cell transcriptional landscape of immune cells shows disease-specific changes of T cell and macrophage populations in human achalasia," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Nourhan Abdelfattah & Parveen Kumar & Caiyi Wang & Jia-Shiun Leu & William F. Flynn & Ruli Gao & David S. Baskin & Kumar Pichumani & Omkar B. Ijare & Stephanie L. Wood & Suzanne Z. Powell & David L. H, 2022. "Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Moumita Datta & Stefanie M. Hansen & Ori Staszewski, 2020. "Microglial Expression of Hdac1 and Hdac2 is Dispensable for Experimental Autoimmune Encephalomyelitis (EAE) Progression," J, MDPI, vol. 3(4), pages 1-8, October.
    11. Jarne Beliën & Stijn Swinnen & Robbe D’hondt & Laia Verdú de Juan & Nina Dedoncker & Patrick Matthys & Jan Bauer & Celine Vens & Sinéad Moylett & Bénédicte Dubois, 2024. "CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Qianqian Zhang & Sijin Cheng & Yongzhi Wang & Mengdi Wang & Yufeng Lu & Zengqi Wen & Yuxin Ge & Qiang Ma & Youqiao Chen & Yaowu Zhang & Ren Cao & Min Li & Weihao Liu & Bo Wang & Qian Wu & Wenqing Jia , 2021. "Interrogation of the microenvironmental landscape in spinal ependymomas reveals dual functions of tumor-associated macrophages," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    13. Rasmus Berglund & Yufei Cheng & Eliane Piket & Milena Z. Adzemovic & Manuel Zeitelhofer & Tomas Olsson & Andre Ortlieb Guerreiro-Cacais & Maja Jagodic, 2024. "The aging mouse CNS is protected by an autophagy-dependent microglia population promoted by IL-34," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Peter Androvic & Martina Schifferer & Katrin Perez Anderson & Ludovico Cantuti-Castelvetri & Hanyi Jiang & Hao Ji & Lu Liu & Garyfallia Gouna & Stefan A. Berghoff & Simon Besson-Girard & Johanna Knofe, 2023. "Spatial Transcriptomics-correlated Electron Microscopy maps transcriptional and ultrastructural responses to brain injury," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Noah R. Johnson & Peng Yuan & Erika Castillo & T. Peter Lopez & Weizhou Yue & Annalise Bond & Brianna M. Rivera & Miranda C. Sullivan & Masakazu Hirouchi & Kurt Giles & Atsushi Aoyagi & Carlo Condello, 2023. "CSF1R inhibitors induce a sex-specific resilient microglial phenotype and functional rescue in a tauopathy mouse model," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7744:d:10.1038_s41586-019-0924-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.