IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7743d10.1038_s41586-019-0910-3.html
   My bibliography  Save this article

Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators

Author

Listed:
  • Laerte L. Patera

    (University of Regensburg)

  • Fabian Queck

    (University of Regensburg)

  • Philipp Scheuerer

    (University of Regensburg)

  • Jascha Repp

    (University of Regensburg)

Abstract

Electron transfer plays a crucial part in many chemical reactions1,2, including photosynthesis, combustion and corrosion. But even though redox-state transitions change the electronic structure of the molecules involved, mapping these changes at the single-molecule level is challenging. Scanning tunnelling microscopy provides insights into the orbital structure3 of single molecules and their interactions4,5, but requires the use of a conductive substrate that keeps molecules in a given charge state and thereby suppresses redox-state transitions. Atomic force microscopy can be used on insulating substrates to obtain structural6 and electrostatic7,8 information but does not generally access electronic states. Here we show that when synchronizing voltage pulses that steer electron tunnelling between a conductive atomic force microscope tip and a substrate with the oscillation of the tip, we can perform tunnelling experiments on non-conductive substrates and thereby map the orbital structure of isolated molecules as a function of their redox state. This allows us to resolve previously inaccessible electronic transitions in space and energy and to visualize the effects of electron transfer and polaron formation on individual molecular orbitals. We anticipate that our approach will prove useful for the investigation of complex redox reactions and charging-related phenomena with sub-ångström resolution.

Suggested Citation

  • Laerte L. Patera & Fabian Queck & Philipp Scheuerer & Jascha Repp, 2019. "Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators," Nature, Nature, vol. 566(7743), pages 245-248, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7743:d:10.1038_s41586-019-0910-3
    DOI: 10.1038/s41586-019-0910-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0910-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0910-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katharina Kaiser & Leonard-Alexander Lieske & Jascha Repp & Leo Gross, 2023. "Charge-state lifetimes of single molecules on few monolayers of NaCl," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Kirill Vasilev & Benjamin Doppagne & Tomáš Neuman & Anna Rosławska & Hervé Bulou & Alex Boeglin & Fabrice Scheurer & Guillaume Schull, 2022. "Internal Stark effect of single-molecule fluorescence," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7743:d:10.1038_s41586-019-0910-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.