IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v565y2019i7741d10.1038_s41586-018-0869-5.html
   My bibliography  Save this article

Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2

Author

Listed:
  • Lina Cao

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Wei Liu

    (University of Science and Technology of China)

  • Qiquan Luo

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Ruoting Yin

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Bing Wang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Jonas Weissenrieder

    (KTH Royal Institute of Technology)

  • Markus Soldemo

    (KTH Royal Institute of Technology)

  • Huan Yan

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yue Lin

    (University of Science and Technology of China)

  • Zhihu Sun

    (University of Science and Technology of China)

  • Chao Ma

    (University of Science and Technology of China)

  • Wenhua Zhang

    (University of Science and Technology of China)

  • Si Chen

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Hengwei Wang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Qiaoqiao Guan

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Tao Yao

    (University of Science and Technology of China)

  • Shiqiang Wei

    (University of Science and Technology of China)

  • Jinlong Yang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Junling Lu

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications1, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel2–4. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)3–7. However, this approach is challenging8–15 because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe1(OH)x clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe1(OH)x–Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

Suggested Citation

  • Lina Cao & Wei Liu & Qiquan Luo & Ruoting Yin & Bing Wang & Jonas Weissenrieder & Markus Soldemo & Huan Yan & Yue Lin & Zhihu Sun & Chao Ma & Wenhua Zhang & Si Chen & Hengwei Wang & Qiaoqiao Guan & Ta, 2019. "Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2," Nature, Nature, vol. 565(7741), pages 631-635, January.
  • Handle: RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0869-5
    DOI: 10.1038/s41586-018-0869-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0869-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0869-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    2. Hao Tan & Bing Tang & Ying Lu & Qianqian Ji & Liyang Lv & Hengli Duan & Na Li & Yao Wang & Sihua Feng & Zhi Li & Chao Wang & Fengchun Hu & Zhihu Sun & Wensheng Yan, 2022. "Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Junjie Li & Ya-fei Jiang & Qi Wang & Cong-Qiao Xu & Duojie Wu & Mohammad Norouzi Banis & Keegan R. Adair & Kieran Doyle-Davis & Debora Motta Meira & Y. Zou Finfrock & Weihan Li & Lei Zhang & Tsun-Kong, 2021. "A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Yu, Qinghua & Ao, Rui & Yan, Fuwu & Liu, Xuan & Li, Yongliang, 2024. "Numerical analysis on ammonia decomposition for hydrogen production in a membrane reactor assisted by a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 225(C).
    5. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Zhimin Jia & Xuetao Qin & Yunlei Chen & Xiangbin Cai & Zirui Gao & Mi Peng & Fei Huang & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Wu Zhou & Hongyang Liu & Ding Ma, 2022. "Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yunan Li & Lingling Guo & Meng Du & Chen Tian & Gui Zhao & Zhengwu Liu & Zhenye Liang & Kunming Hou & Junxiang Chen & Xi Liu & Luozhen Jiang & Bing Nan & Lina Li, 2024. "Unraveling distinct effects between CuOx and PtCu alloy sites in Pt−Cu bimetallic catalysts for CO oxidation at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Lina Zhang & Shaolong Wan & Congcong Du & Qiang Wan & Hien Pham & Jiafei Zhao & Xingyu Ding & Diye Wei & Wei Zhao & Jiwei Li & Yanping Zheng & Hui Xie & Hua Zhang & Mingshu Chen & Kelvin H. L. Zhang &, 2024. "Generating active metal/oxide reverse interfaces through coordinated migration of single atoms," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0869-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.