IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v565y2019i7737d10.1038_s41586-018-0771-1.html
   My bibliography  Save this article

Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon

Author

Listed:
  • Curtis D. Williams

    (University of California-Davis)

  • Sujoy Mukhopadhyay

    (University of California-Davis)

Abstract

Evidence for the capture of nebular gases by planetary interiors would place important constraints on models of planet formation. These constraints include accretion timescales, thermal evolution, volatile compositions and planetary redox states1–7. Retention of nebular gases by planetary interiors also constrains the dynamics of outgassing and volatile loss associated with the assembly and ensuing evolution of terrestrial planets. But evidence for such gases in Earth’s interior remains controversial8–14. The ratio of the two primordial neon isotopes, 20Ne/22Ne, is significantly different for the three potential sources of Earth’s volatiles: nebular gas15, solar-wind-irradiated material16 and CI chondrites17. Therefore, the 20Ne/22Ne ratio is a powerful tool for assessing the source of volatiles in Earth’s interior. Here we present neon isotope measurements from deep mantle plumes that reveal 20Ne/22Ne ratios of up to 13.03 ± 0.04 (2 standard deviations). These ratios are demonstrably higher than those for solar-wind-irradiated material and CI chondrites, requiring the presence of nebular neon in the deep mantle. Furthermore, we determine a 20Ne/22Ne ratio for the primordial plume mantle of 13.23 ± 0.22 (2 standard deviations), which is indistinguishable from the nebular ratio, providing robust evidence for a reservoir of nebular gas preserved in the deep mantle today. The acquisition of nebular gases requires planetary embryos to grow to sufficiently large mass before the dissipation of the protoplanetary disk. Our observations also indicate distinct 20Ne/22Ne ratios between deep mantle plumes and mid-ocean-ridge basalts, which is best explained by addition of a chondritic component to the shallower mantle during the main phase of Earth’s accretion and by subsequent recycling of seawater-derived neon in plate tectonic processes.

Suggested Citation

  • Curtis D. Williams & Sujoy Mukhopadhyay, 2019. "Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon," Nature, Nature, vol. 565(7737), pages 78-81, January.
  • Handle: RePEc:nat:nature:v:565:y:2019:i:7737:d:10.1038_s41586-018-0771-1
    DOI: 10.1038/s41586-018-0771-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0771-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0771-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenzhong Wang & Michael J. Walter & John P. Brodholt & Shichun Huang, 2024. "Early planetesimal differentiation and late accretion shaped Earth’s nitrogen budget," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yunguo Li & Lidunka Vočadlo & Chris Ballentine & John P. Brodholt, 2022. "Primitive noble gases sampled from ocean island basalts cannot be from the Earth’s core," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:565:y:2019:i:7737:d:10.1038_s41586-018-0771-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.