Author
Listed:
- Yih-Lin Chen
(Institute of Molecular Biology)
- Lih-Jen Chen
(Institute of Molecular Biology)
- Chiung-Chih Chu
(Institute of Molecular Biology)
- Po-Kai Huang
(Institute of Molecular Biology
University of California)
- Jie-Ru Wen
(Institute of Molecular Biology)
- Hsou-min Li
(Institute of Molecular Biology)
Abstract
The two-membrane envelope is a defining feature of chloroplasts. Chloroplasts evolved from a Gram-negative cyanobacterial endosymbiont. During evolution, genes of the endosymbiont have been transferred to the host nuclear genome. Most chloroplast proteins are synthesized in the cytosol as higher-molecular-mass preproteins with an N-terminal transit peptide. Preproteins are transported into chloroplasts by the TOC and TIC (translocons at the outer- and inner-envelope membranes of chloroplasts, respectively) machineries1,2, but how TOC and TIC are assembled together is unknown. Here we report the identification of the TIC component TIC236; TIC236 is an integral inner-membrane protein that projects a 230-kDa domain into the intermembrane space, which binds directly to the outer-membrane channel TOC75. The knockout mutation of TIC236 is embryonically lethal. In TIC236-knockdown mutants, a smaller amount of the inner-membrane channel TIC20 was associated with TOC75; the amount of TOC–TIC supercomplexes was also reduced. This resulted in a reduced import rate into the stroma, though outer-membrane protein insertion was unaffected. The size and the essential nature of TIC236 indicate that—unlike in mitochondria, in which the outer- and inner-membrane translocons exist as separate complexes and a supercomplex is only transiently assembled during preprotein translocation3,4—a long and stable protein bridge in the intermembrane space is required for protein translocation into chloroplasts. Furthermore, TIC236 and TOC75 are homologues of bacterial inner-membrane TamB5 and outer-membrane BamA, respectively. Our evolutionary analyses show that, similar to TOC75, TIC236 is preserved only in plants and has co-evolved with TOC75 throughout the plant lineage. This suggests that the backbone of the chloroplast protein-import machinery evolved from the bacterial TamB–BamA protein-secretion system.
Suggested Citation
Yih-Lin Chen & Lih-Jen Chen & Chiung-Chih Chu & Po-Kai Huang & Jie-Ru Wen & Hsou-min Li, 2018.
"TIC236 links the outer and inner membrane translocons of the chloroplast,"
Nature, Nature, vol. 564(7734), pages 125-129, December.
Handle:
RePEc:nat:nature:v:564:y:2018:i:7734:d:10.1038_s41586-018-0713-y
DOI: 10.1038/s41586-018-0713-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:564:y:2018:i:7734:d:10.1038_s41586-018-0713-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.