IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v563y2018i7731d10.1038_s41586-018-0677-y.html
   My bibliography  Save this article

A candidate super-Earth planet orbiting near the snow line of Barnard’s star

Author

Listed:
  • I. Ribas

    (Institut de Ciències de l’Espai (ICE, CSIC), Campus UAB
    Institut d’Estudis Espacials de Catalunya (IEEC))

  • M. Tuomi

    (University of Hertfordshire)

  • A. Reiners

    (Georg-August-Universität Göttingen)

  • R. P. Butler

    (Carnegie Institution for Science)

  • J. C. Morales

    (Institut de Ciències de l’Espai (ICE, CSIC), Campus UAB
    Institut d’Estudis Espacials de Catalunya (IEEC))

  • M. Perger

    (Institut de Ciències de l’Espai (ICE, CSIC), Campus UAB
    Institut d’Estudis Espacials de Catalunya (IEEC))

  • S. Dreizler

    (Georg-August-Universität Göttingen)

  • C. Rodríguez-López

    (Instituto de Astrofísica de Andalucía (IAA, CSIC))

  • J. I. González Hernández

    (Instituto de Astrofísica de Canarias (IAC)
    Universidad de La Laguna (ULL), Departamento de Astrofísica)

  • A. Rosich

    (Institut de Ciències de l’Espai (ICE, CSIC), Campus UAB
    Institut d’Estudis Espacials de Catalunya (IEEC))

  • F. Feng

    (University of Hertfordshire)

  • T. Trifonov

    (Max-Planck-Institut für Astronomie)

  • S. S. Vogt

    (UCO/Lick Observatory, University of California at Santa Cruz)

  • J. A. Caballero

    (Centro de Astrobiología, CSIC-INTA, ESAC)

  • A. Hatzes

    (Thüringer Landessternwarte)

  • E. Herrero

    (Institut de Ciències de l’Espai (ICE, CSIC), Campus UAB
    Institut d’Estudis Espacials de Catalunya (IEEC))

  • S. V. Jeffers

    (Georg-August-Universität Göttingen)

  • M. Lafarga

    (Institut de Ciències de l’Espai (ICE, CSIC), Campus UAB
    Institut d’Estudis Espacials de Catalunya (IEEC))

  • F. Murgas

    (Instituto de Astrofísica de Canarias (IAC)
    Universidad de La Laguna (ULL), Departamento de Astrofísica)

  • R. P. Nelson

    (Queen Mary University of London)

  • E. Rodríguez

    (Instituto de Astrofísica de Andalucía (IAA, CSIC))

  • J. B. P. Strachan

    (Queen Mary University of London)

  • L. Tal-Or

    (Georg-August-Universität Göttingen
    Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University)

  • J. Teske

    (Carnegie Institution for Science)

  • B. Toledo-Padrón

    (Instituto de Astrofísica de Canarias (IAC)
    Universidad de La Laguna (ULL), Departamento de Astrofísica)

  • M. Zechmeister

    (Georg-August-Universität Göttingen)

  • A. Quirrenbach

    (Landessternwarte, Zentrum für Astronomie der Universität Heidelberg)

  • P. J. Amado

    (Instituto de Astrofísica de Andalucía (IAA, CSIC))

  • M. Azzaro

    (Centro Astronómico Hispano-Alemán (CSIC-MPG), Observatorio Astronómico de Calar Alto)

  • V. J. S. Béjar

    (Instituto de Astrofísica de Canarias (IAC)
    Universidad de La Laguna (ULL), Departamento de Astrofísica)

  • J. R. Barnes

    (The Open University)

  • Z. M. Berdiñas

    (Universidad de Chile)

  • J. Burt

    (Kavli Institute, Massachusetts Institute of Technology)

  • G. Coleman

    (Physikalisches Institut, Universität Bern)

  • M. Cortés-Contreras

    (Centro de Astrobiología, CSIC-INTA, ESAC)

  • J. Crane

    (Carnegie Institution for Science)

  • S. G. Engle

    (Villanova University)

  • E. F. Guinan

    (Villanova University)

  • C. A. Haswell

    (The Open University)

  • Th. Henning

    (Max-Planck-Institut für Astronomie)

  • B. Holden

    (UCO/Lick Observatory, University of California at Santa Cruz)

  • J. Jenkins

    (Universidad de Chile)

  • H. R. A. Jones

    (University of Hertfordshire)

  • A. Kaminski

    (Landessternwarte, Zentrum für Astronomie der Universität Heidelberg)

  • M. Kiraga

    (Warsaw University Observatory)

  • M. Kürster

    (Max-Planck-Institut für Astronomie)

  • M. H. Lee

    (The University of Hong Kong)

  • M. J. López-González

    (Instituto de Astrofísica de Andalucía (IAA, CSIC))

  • D. Montes

    (Facultad de Ciencias Físicas, Universidad Complutense de Madrid)

  • J. Morin

    (Université de Montpellier, CNRS)

  • A. Ofir

    (Weizmann Institute of Science)

  • E. Pallé

    (Instituto de Astrofísica de Canarias (IAC)
    Universidad de La Laguna (ULL), Departamento de Astrofísica)

  • R. Rebolo

    (Instituto de Astrofísica de Canarias (IAC)
    Universidad de La Laguna (ULL), Departamento de Astrofísica
    Consejo Superior de Investigaciones Científicas (CSIC))

  • S. Reffert

    (Landessternwarte, Zentrum für Astronomie der Universität Heidelberg)

  • A. Schweitzer

    (Hamburger Sternwarte, Universität Hamburg)

  • W. Seifert

    (Landessternwarte, Zentrum für Astronomie der Universität Heidelberg)

  • S. A. Shectman

    (Carnegie Institution for Science)

  • D. Staab

    (The Open University)

  • R. A. Street

    (Las Cumbres Observatory Global Telescope Network)

  • A. Suárez Mascareño

    (Instituto de Astrofísica de Canarias (IAC)
    Observatoire Astronomique de l’Université de Genève)

  • Y. Tsapras

    (Astronomisches Rechen-Institut)

  • S. X. Wang

    (Carnegie Institution for Science)

  • G. Anglada-Escudé

    (Instituto de Astrofísica de Andalucía (IAA, CSIC)
    Queen Mary University of London)

Abstract

Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs1, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known2,3 and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging4–6, astrometry7,8 and direct imaging9, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard’s star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard’s star, making it an excellent target for direct imaging and astrometric observations in the future.

Suggested Citation

  • I. Ribas & M. Tuomi & A. Reiners & R. P. Butler & J. C. Morales & M. Perger & S. Dreizler & C. Rodríguez-López & J. I. González Hernández & A. Rosich & F. Feng & T. Trifonov & S. S. Vogt & J. A. Cabal, 2018. "A candidate super-Earth planet orbiting near the snow line of Barnard’s star," Nature, Nature, vol. 563(7731), pages 365-368, November.
  • Handle: RePEc:nat:nature:v:563:y:2018:i:7731:d:10.1038_s41586-018-0677-y
    DOI: 10.1038/s41586-018-0677-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0677-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0677-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:563:y:2018:i:7731:d:10.1038_s41586-018-0677-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.