IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7726d10.1038_s41586-018-0592-2.html
   My bibliography  Save this article

Electronic noise due to temperature differences in atomic-scale junctions

Author

Listed:
  • Ofir Shein Lumbroso

    (Weizmann Institute of Science)

  • Lena Simine

    (University of Toronto, Toronto
    Rice University)

  • Abraham Nitzan

    (University of Pennsylvania
    Tel Aviv University)

  • Dvira Segal

    (University of Toronto, Toronto)

  • Oren Tal

    (Weizmann Institute of Science)

Abstract

Since the discovery a century ago1–3 of electronic thermal noise and shot noise, these forms of fundamental noise have had an enormous impact on science and technology research and applications. They can be used to probe quantum effects and thermodynamic quantities4–11, but they are also regarded as undesirable in electronic devices because they obscure the target signal. Electronic thermal noise is generated at equilibrium at finite (non-zero) temperature, whereas electronic shot noise is a non-equilibrium current noise that is generated by partial transmission and reflection (partition) of the incoming electrons8. Until now, shot noise has been stimulated by a voltage, either applied directly8 or activated by radiation12,13. Here we report measurements of a fundamental electronic noise that is generated by temperature differences across nanoscale conductors, which we term ‘delta-T noise’. We experimentally demonstrate this noise in atomic and molecular junctions, and analyse it theoretically using the Landauer formalism8,14. Our findings show that delta-T noise is distinct from thermal noise and voltage-activated shot noise8. Like thermal noise, it has a purely thermal origin, but delta-T noise is generated only out of equilibrium. Delta-T noise and standard shot noise have the same partition origin, but are activated by different stimuli. We infer that delta-T noise in combination with thermal noise can be used to detect temperature differences across nanoscale conductors without the need to fabricate sophisticated local probes. Thus it can greatly facilitate the study of heat transport at the nanoscale. In the context of modern electronics, temperature differences are often generated unintentionally across electronic components. Taking into account the contribution of delta-T noise in these cases is likely to be essential for the design of efficient nanoscale electronics at the quantum limit.

Suggested Citation

  • Ofir Shein Lumbroso & Lena Simine & Abraham Nitzan & Dvira Segal & Oren Tal, 2018. "Electronic noise due to temperature differences in atomic-scale junctions," Nature, Nature, vol. 562(7726), pages 240-244, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7726:d:10.1038_s41586-018-0592-2
    DOI: 10.1038/s41586-018-0592-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0592-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0592-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Glidic & O. Maillet & C. Piquard & A. Aassime & A. Cavanna & Y. Jin & U. Gennser & A. Anthore & F. Pierre, 2023. "Quasiparticle Andreev scattering in the ν = 1/3 fractional quantum Hall regime," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7726:d:10.1038_s41586-018-0592-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.