IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7725d10.1038_s41586-018-0565-5.html
   My bibliography  Save this article

Very-high-energy particle acceleration powered by the jets of the microquasar SS 433

Author

Listed:
  • A. U. Abeysekara

    (University of Utah)

  • A. Albert

    (Los Alamos National Laboratory)

  • R. Alfaro

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • C. Alvarez

    (Universidad Autónoma de Chiapas)

  • J. D. Álvarez

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • R. Arceo

    (Universidad Autónoma de Chiapas)

  • J. C. Arteaga-Velázquez

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • D. Avila Rojas

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • H. A. Ayala Solares

    (Pennsylvania State University)

  • E. Belmont-Moreno

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • S. Y. BenZvi

    (University of Rochester)

  • C. Brisbois

    (Michigan Technological University)

  • K. S. Caballero-Mora

    (Universidad Autónoma de Chiapas)

  • T. Capistrán

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • A. Carramiñana

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • S. Casanova

    (Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN
    Max-Planck Institute for Nuclear Physics)

  • M. Castillo

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • U. Cotti

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • J. Cotzomi

    (Benemérita Universidad Autónoma de Puebla)

  • S. Coutiño de León

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • C. De León

    (Benemérita Universidad Autónoma de Puebla)

  • E. De la Fuente

    (Universidad de Guadalajara)

  • J. C. Díaz-Vélez

    (Universidad de Guadalajara
    University of Wisconsin-Madison)

  • S. Dichiara

    (Universidad Nacional Autónoma de México)

  • B. L. Dingus

    (Los Alamos National Laboratory)

  • M. A. DuVernois

    (University of Wisconsin-Madison)

  • R. W. Ellsworth

    (George Mason University)

  • K. Engel

    (University of Maryland)

  • C. Espinoza

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • K. Fang

    (University of Maryland
    University of Maryland)

  • H. Fleischhack

    (Michigan Technological University)

  • N. Fraija

    (Universidad Nacional Autónoma de México)

  • A. Galván-Gámez

    (Universidad Nacional Autónoma de México)

  • J. A. García-González

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • F. Garfias

    (Universidad Nacional Autónoma de México)

  • A. González-Muñoz

    (Universidad de Guadalajara)

  • M. M. González

    (Universidad Nacional Autónoma de México)

  • J. A. Goodman

    (University of Maryland)

  • Z. Hampel-Arias

    (University of Wisconsin-Madison
    Université Libre de Bruxelles)

  • J. P. Harding

    (Los Alamos National Laboratory)

  • S. Hernandez

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • J. Hinton

    (Max-Planck Institute for Nuclear Physics)

  • B. Hona

    (Michigan Technological University)

  • F. Hueyotl-Zahuantitla

    (Universidad Autónoma de Chiapas)

  • C. M. Hui

    (NASA Marshall Space Flight Center, Astrophysics Office)

  • P. Hüntemeyer

    (Michigan Technological University)

  • A. Iriarte

    (Universidad Nacional Autónoma de México)

  • A. Jardin-Blicq

    (Max-Planck Institute for Nuclear Physics)

  • V. Joshi

    (Max-Planck Institute for Nuclear Physics)

  • S. Kaufmann

    (Universidad Autónoma de Chiapas)

  • P. Kar

    (University of Utah)

  • G. J. Kunde

    (Los Alamos National Laboratory)

  • R. J. Lauer

    (University of New Mexico)

  • W. H. Lee

    (Universidad Nacional Autónoma de México)

  • H. León Vargas

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • H. Li

    (Los Alamos National Laboratory)

  • J. T. Linnemann

    (Michigan State University)

  • A. L. Longinotti

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • G. Luis-Raya

    (Universidad Politecnica de Pachuca)

  • R. López-Coto

    (INFN and Universita di Padova)

  • K. Malone

    (Pennsylvania State University)

  • S. S. Marinelli

    (Michigan State University)

  • O. Martinez

    (Benemérita Universidad Autónoma de Puebla)

  • I. Martinez-Castellanos

    (University of Maryland)

  • J. Martínez-Castro

    (Instituto Politécnico Nacional)

  • J. A. Matthews

    (University of New Mexico)

  • P. Miranda-Romagnoli

    (Universidad Autónoma del Estado de Hidalgo)

  • E. Moreno

    (Benemérita Universidad Autónoma de Puebla)

  • M. Mostafá

    (Pennsylvania State University)

  • A. Nayerhoda

    (Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN)

  • L. Nellen

    (Universidad Nacional Autónoma de Mexico)

  • M. Newbold

    (University of Utah)

  • M. U. Nisa

    (University of Rochester)

  • R. Noriega-Papaqui

    (Universidad Autónoma del Estado de Hidalgo)

  • J. Pretz

    (Pennsylvania State University)

  • E. G. Pérez-Pérez

    (Universidad Politecnica de Pachuca)

  • Z. Ren

    (University of New Mexico)

  • C. D. Rho

    (University of Rochester)

  • C. Rivière

    (University of Maryland)

  • D. Rosa-González

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • M. Rosenberg

    (Pennsylvania State University)

  • E. Ruiz-Velasco

    (Max-Planck Institute for Nuclear Physics)

  • F. Salesa Greus

    (Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN)

  • A. Sandoval

    (Instituto de Física, Universidad Nacional Autónoma de México)

  • M. Schneider

    (University of California, Santa Cruz)

  • H. Schoorlemmer

    (Max-Planck Institute for Nuclear Physics)

  • M. Seglar Arroyo

    (Pennsylvania State University)

  • G. Sinnis

    (Los Alamos National Laboratory)

  • A. J. Smith

    (University of Maryland)

  • R. W. Springer

    (University of Utah)

  • P. Surajbali

    (Max-Planck Institute for Nuclear Physics)

  • I. Taboada

    (Georgia Institute of Technology)

  • O. Tibolla

    (Universidad Autónoma de Chiapas)

  • K. Tollefson

    (Michigan State University)

  • I. Torres

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • G. Vianello

    (Stanford University)

  • L. Villaseñor

    (Benemérita Universidad Autónoma de Puebla)

  • T. Weisgarber

    (University of Wisconsin-Madison)

  • F. Werner

    (Max-Planck Institute for Nuclear Physics)

  • S. Westerhoff

    (University of Wisconsin-Madison)

  • J. Wood

    (University of Wisconsin-Madison)

  • T. Yapici

    (University of Rochester)

  • G. Yodh

    (University of California, Irvine)

  • A. Zepeda

    (Universidad Autónoma de Chiapas
    Centro de Investigación y de Estudios Avanzados del IPN)

  • H. Zhang

    (Purdue University)

  • H. Zhou

    (Los Alamos National Laboratory)

Abstract

SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star)1–3. Two jets of ionized matter with a bulk velocity of approximately 0.26c (where c is the speed of light in vacuum) extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets2,4–8. SS 433 differs from other microquasars (small-scale versions of quasars that are present within our own Galaxy) in that the accretion is believed to be super-Eddington9–11, and the luminosity of the system is about 1040 ergs per second2,9,12,13. The lobes of W50 in which the jets terminate, about 40 parsecs from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed14–16. At higher energies (greater than 100 gigaelectronvolts), the particle fluxes of γ-rays from X-ray hotspots around SS 433 have been reported as flux upper limits6,17–20. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons that are interacting with the ambient gas. Here we report teraelectronvolt γ-ray observations of the SS 433/W50 system that spatially resolve the lobes. The teraelectronvolt emission is localized to structures in the lobes, far from the centre of the system where the jets are formed. We have measured photon energies of at least 25 teraelectronvolts, and these are certainly not Doppler-boosted, because of the viewing geometry. We conclude that the emission—from radio to teraelectronvolt energies—is consistent with a single population of electrons with energies extending to at least hundreds of teraelectronvolts in a magnetic field of about 16 microgauss.

Suggested Citation

  • A. U. Abeysekara & A. Albert & R. Alfaro & C. Alvarez & J. D. Álvarez & R. Arceo & J. C. Arteaga-Velázquez & D. Avila Rojas & H. A. Ayala Solares & E. Belmont-Moreno & S. Y. BenZvi & C. Brisbois & K. , 2018. "Very-high-energy particle acceleration powered by the jets of the microquasar SS 433," Nature, Nature, vol. 562(7725), pages 82-85, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0565-5
    DOI: 10.1038/s41586-018-0565-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0565-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0565-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0565-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.