IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7725d10.1038_s41586-018-0553-9.html
   My bibliography  Save this article

Asymmetric α-arylation of amino acids

Author

Listed:
  • Daniel J. Leonard

    (University of Bristol)

  • John W. Ward

    (University of Bristol)

  • Jonathan Clayden

    (University of Bristol)

Abstract

Quaternary amino acids, in which the α-carbon that bears the amino and carboxyl groups also carries two carbon substituents, have an important role as modifiers of peptide conformation and bioactivity and as precursors of medicinally important compounds1,2. In contrast to enantioselective alkylation at this α-carbon, for which there are several methods3–8, general enantioselective introduction of an aryl substituent at the α-carbon is synthetically challenging9. Nonetheless, the resultant α-aryl amino acids and their derivatives are valuable precursors to bioactive molecules10,11. Here we describe the synthesis of quaternary α-aryl amino acids from enantiopure amino acid precursors by α-arylation without loss of stereochemical integrity. Our approach relies on the temporary formation of a second stereogenic centre in an N′-arylurea adduct12 of an imidazolidinone derivative6 of the precursor amino acid, and uses readily available enantiopure amino acids both as a precursor and as a source of asymmetry. It avoids the use of valuable transition metals, and enables arylation with electron-rich, electron-poor and heterocyclic substituents. Either enantiomer of the product can be formed from a single amino acid precursor. The method is practical and scalable, and provides the opportunity to produce α-arylated quaternary amino acids in multi-gram quantities.

Suggested Citation

  • Daniel J. Leonard & John W. Ward & Jonathan Clayden, 2018. "Asymmetric α-arylation of amino acids," Nature, Nature, vol. 562(7725), pages 105-109, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0553-9
    DOI: 10.1038/s41586-018-0553-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0553-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0553-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ellie Stammers & Chris D. Parsons & Jonathan Clayden & Alastair J. J. Lennox, 2023. "Electrochemical synthesis of biaryls by reductive extrusion from N,N’-diarylureas," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Yu Zhang & Jaro Vanderghinste & Jinxin Wang & Shoubhik Das, 2024. "Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0553-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.