Author
Listed:
- Emily J. Dennis
(The Rockefeller University)
- May Dobosiewicz
(The Rockefeller University)
- Xin Jin
(The Rockefeller University
Harvard University)
- Laura B. Duvall
(The Rockefeller University)
- Philip S. Hartman
(Texas Christian University)
- Cornelia I. Bargmann
(The Rockefeller University
Kavli Neural Systems Institute)
- Leslie B. Vosshall
(The Rockefeller University
Kavli Neural Systems Institute
Howard Hughes Medical Institute)
Abstract
DEET (N,N-diethyl-meta-toluamide) is a synthetic chemical identified by the US Department of Agriculture in 1946 in a screen for repellents to protect soldiers from mosquito-borne diseases1,2. Since its discovery, DEET has become the world’s most widely used arthropod repellent and is effective against invertebrates separated by millions of years of evolution—including biting flies3, honeybees4, ticks5, and land leeches3. In insects, DEET acts on the olfactory system5–12 and requires the olfactory receptor co-receptor Orco7,9–12, but exactly how it works remains controversial13. Here we show that the nematode Caenorhabditis elegans is sensitive to DEET and use this genetically tractable animal to study the mechanism of action of this chemical. We found that DEET is not a volatile repellent, but instead interferes selectively with chemotaxis to a variety of attractant and repellent molecules. In a forward genetic screen for DEET-resistant worms, we identified a gene that encodes a single G protein-coupled receptor, str-217, which is expressed in a single pair of chemosensory neurons that are responsive to DEET, called ADL neurons. Mis-expression of str-217 in another chemosensory neuron conferred responses to DEET. Engineered str-217 mutants, and a wild isolate of C. elegans that carries a str-217 deletion, are resistant to DEET. We found that DEET can interfere with behaviour by inducing an increase in average pause length during locomotion, and show that this increase in pausing requires both str-217 and ADL neurons. Finally, we demonstrated that ADL neurons are activated by DEET and that optogenetic activation of ADL neurons increased average pause length. This is consistent with the ‘confusant’ hypothesis, which proposes that DEET is not a simple repellent but that it instead modulates multiple olfactory pathways to scramble behavioural responses10,11. Our results suggest a consistent motif in the effectiveness of DEET across widely divergent taxa: an effect on multiple chemosensory neurons that disrupts the pairing between odorant stimulus and behavioural response.
Suggested Citation
Emily J. Dennis & May Dobosiewicz & Xin Jin & Laura B. Duvall & Philip S. Hartman & Cornelia I. Bargmann & Leslie B. Vosshall, 2018.
"A natural variant and engineered mutation in a GPCR promote DEET resistance in C. elegans,"
Nature, Nature, vol. 562(7725), pages 119-123, October.
Handle:
RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0546-8
DOI: 10.1038/s41586-018-0546-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7725:d:10.1038_s41586-018-0546-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.