IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7724d10.1038_s41586-018-0536-x.html
   My bibliography  Save this article

Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics

Author

Listed:
  • Sungjun Park

    (RIKEN
    Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Co.)

  • Soo Won Heo

    (RIKEN)

  • Wonryung Lee

    (The University of Tokyo)

  • Daishi Inoue

    (RIKEN)

  • Zhi Jiang

    (The University of Tokyo
    Thin-Film Device Laboratory)

  • Kilho Yu

    (RIKEN)

  • Hiroaki Jinno

    (RIKEN
    The University of Tokyo)

  • Daisuke Hashizume

    (RIKEN)

  • Masaki Sekino

    (The University of Tokyo)

  • Tomoyuki Yokota

    (The University of Tokyo)

  • Kenjiro Fukuda

    (RIKEN
    Thin-Film Device Laboratory)

  • Keisuke Tajima

    (RIKEN)

  • Takao Someya

    (RIKEN
    The University of Tokyo
    Thin-Film Device Laboratory)

Abstract

Next-generation biomedical devices1–9 will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues1–4 and skin5–9. Ultra-flexible organic power sources10–13 that can be wrapped around an object have proven mechanical and thermal stability in long-term operation13, making them potentially useful in human-compatible electronics. However, the integration of these power sources with functional electric devices including sensors has not yet been demonstrated because of their unstable output power under mechanical deformation and angular change. Also, it will be necessary to minimize high-temperature and energy-intensive processes10,12 when fabricating an integrated power source and sensor, because such processes can damage the active material of the functional device and deform the few-micrometre-thick polymeric substrates. Here we realize self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue. We integrated organic electrochemical transistors used as sensors with organic photovoltaic power sources on a one-micrometre-thick ultra-flexible substrate. A high-throughput room-temperature moulding process was used to form nano-grating morphologies (with a periodicity of 760 nanometres) on the charge transporting layers. This substantially increased the efficiency of the organophotovoltaics, giving a high power-conversion efficiency that reached 10.5 per cent and resulted in a high power-per-weight value of 11.46 watts per gram. The organic electrochemical transistors exhibited a transconductance of 0.8 millisiemens and fast responsivity above one kilohertz under physiological conditions, which resulted in a maximum signal-to-noise ratio of 40.02 decibels for cardiac signal detection. Our findings offer a general platform for next-generation self-powered electronics.

Suggested Citation

  • Sungjun Park & Soo Won Heo & Wonryung Lee & Daishi Inoue & Zhi Jiang & Kilho Yu & Hiroaki Jinno & Daisuke Hashizume & Masaki Sekino & Tomoyuki Yokota & Kenjiro Fukuda & Keisuke Tajima & Takao Someya, 2018. "Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics," Nature, Nature, vol. 561(7724), pages 516-521, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0536-x
    DOI: 10.1038/s41586-018-0536-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0536-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0536-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Gongyi & Liang, Ying & Sun, Xiaofang & Xu, Chuanzhong & Yu, Fei, 2020. "Analyzing S-Shaped I–V characteristics of solar cells by solving three-diode lumped-parameter equivalent circuit model explicitly," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0536-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.