IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7723d10.1038_s41586-018-0297-6.html
   My bibliography  Save this article

Publisher Correction: Magnetic edge states and coherent manipulation of graphene nanoribbons

Author

Listed:
  • Michael Slota

    (University of Oxford
    Centre for Advanced ESR, University of Oxford)

  • Ashok Keerthi

    (Max-Planck-Institut für Polymerforschung)

  • William K. Myers

    (Centre for Advanced ESR, University of Oxford)

  • Evgeny Tretyakov

    (N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry)

  • Martin Baumgarten

    (Max-Planck-Institut für Polymerforschung)

  • Arzhang Ardavan

    (Centre for Advanced ESR, University of Oxford
    Clarendon Laboratory, University of Oxford)

  • Hatef Sadeghi

    (Lancaster University)

  • Colin J. Lambert

    (Lancaster University)

  • Akimitsu Narita

    (Max-Planck-Institut für Polymerforschung)

  • Klaus Müllen

    (Max-Planck-Institut für Polymerforschung)

  • Lapo Bogani

    (University of Oxford
    Centre for Advanced ESR, University of Oxford)

Abstract

In Fig. 1 of this Letter, there should have been two nitrogen (N) atoms at the 1,3-positions of all the blue chemical structures (next to the oxygen atoms), rather than one at the 2-position. The figure has been corrected online, and the original incorrect figure is shown as Supplementary Information to the accompanying Amendment.

Suggested Citation

  • Michael Slota & Ashok Keerthi & William K. Myers & Evgeny Tretyakov & Martin Baumgarten & Arzhang Ardavan & Hatef Sadeghi & Colin J. Lambert & Akimitsu Narita & Klaus Müllen & Lapo Bogani, 2018. "Publisher Correction: Magnetic edge states and coherent manipulation of graphene nanoribbons," Nature, Nature, vol. 561(7723), pages 31-31, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7723:d:10.1038_s41586-018-0297-6
    DOI: 10.1038/s41586-018-0297-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0297-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0297-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli Yang & Ankang Guo & Jie Yang & Jinyang Chen & Ke Meng & Shunhua Hu & Ran Duan & Mingliang Zhu & Wenkang Shi & Yang Qin & Rui Zhang & Haijun Yang & Jikun Li & Lidan Guo & Xiangnan Sun & Yunqi Liu, 2024. "Halogenated-edge polymeric semiconductor for efficient spin transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Shengcong Shang & Changsheng Du & Youxing Liu & Minghui Liu & Xinyu Wang & Wenqiang Gao & Ye Zou & Jichen Dong & Yunqi Liu & Jianyi Chen, 2022. "A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Jens Brede & Nestor Merino-Díez & Alejandro Berdonces-Layunta & Sofía Sanz & Amelia Domínguez-Celorrio & Jorge Lobo-Checa & Manuel Vilas-Varela & Diego Peña & Thomas Frederiksen & José I. Pascual & Di, 2023. "Detecting the spin-polarization of edge states in graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Jinyi Wang & Yihan Zhu & Guilin Zhuang & Yayu Wu & Shengda Wang & Pingsen Huang & Guan Sheng & Muqing Chen & Shangfeng Yang & Thomas Greber & Pingwu Du, 2022. "Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7723:d:10.1038_s41586-018-0297-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.