IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7721d10.1038_s41586-018-0430-6.html
   My bibliography  Save this article

Sulfoxaflor exposure reduces bumblebee reproductive success

Author

Listed:
  • Harry Siviter

    (Royal Holloway University of London)

  • Mark J. F. Brown

    (Royal Holloway University of London)

  • Ellouise Leadbeater

    (Royal Holloway University of London)

Abstract

Intensive agriculture currently relies on pesticides to maximize crop yield1,2. Neonicotinoids are the most widely used insecticides globally3, but increasing evidence of negative impacts on important pollinators4–9 and other non-target organisms10 has led to legislative reassessment and created demand for the development of alternative products. Sulfoximine-based insecticides are the most likely successor11, and are either licensed for use or under consideration for licensing in several worldwide markets3, including within the European Union12, where certain neonicotinoids (imidacloprid, clothianidin and thiamethoxam) are now banned from agricultural use outside of permanent greenhouse structures. There is an urgent need to pre-emptively evaluate the potential sub-lethal effects of sulfoximine-based pesticides on pollinators11, because such effects are rarely detected by standard ecotoxicological assessments, but can have major impacts at larger ecological scales13–15. Here we show that chronic exposure to the sulfoximine-based insecticide sulfoxaflor, at dosages consistent with potential post-spray field exposure, has severe sub-lethal effects on bumblebee (Bombus terrestris) colonies. Field-based colonies that were exposed to sulfoxaflor during the early growth phase produced significantly fewer workers than unexposed controls, and ultimately produced fewer reproductive offspring. Differences between the life-history trajectories of treated and control colonies first became apparent when individuals exposed as larvae began to emerge, suggesting that direct or indirect effects on a small cohort may have cumulative long-term consequences for colony fitness. Our results caution against the use of sulfoximines as a direct replacement for neonicotinoids. To avoid continuing cycles of novel pesticide release and removal, with concomitant impacts on the environment, a broad evidence base needs to be assessed prior to the development of policy and regulation.

Suggested Citation

  • Harry Siviter & Mark J. F. Brown & Ellouise Leadbeater, 2018. "Sulfoxaflor exposure reduces bumblebee reproductive success," Nature, Nature, vol. 561(7721), pages 109-112, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7721:d:10.1038_s41586-018-0430-6
    DOI: 10.1038/s41586-018-0430-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0430-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0430-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolian Zhang & Xiuguo Wang & Yalei Liu & Kuan Fang & Tong Liu, 2020. "The Toxic Effects of Sulfoxaflor Induced in Earthworms ( Eisenia fetida ) under Effective Concentrations," IJERPH, MDPI, vol. 17(5), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7721:d:10.1038_s41586-018-0430-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.