IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7718d10.1038_s41586-018-0357-y.html
   My bibliography  Save this article

Room-temperature electrical control of exciton flux in a van der Waals heterostructure

Author

Listed:
  • Dmitrii Unuchek

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Alberto Ciarrocchi

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Ahmet Avsar

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Andras Kis

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Devices that rely on the manipulation of excitons—bound pairs of electrons and holes—hold great promise for realizing efficient interconnects between optical data transmission and electrical processing systems. Although exciton-based transistor actions have been demonstrated successfully in bulk semiconductor-based coupled quantum wells1–3, the low temperature required for their operation limits their practical application. The recent emergence of two-dimensional semiconductors with large exciton binding energies4,5 may lead to excitonic devices and circuits that operate at room temperature. Whereas individual two-dimensional materials have short exciton diffusion lengths, the spatial separation of electrons and holes in different layers in heterostructures could help to overcome this limitation and enable room-temperature operation of mesoscale devices6–8. Here we report excitonic devices made of MoS2–WSe2 van der Waals heterostructures encapsulated in hexagonal boron nitride that demonstrate electrically controlled transistor actions at room temperature. The long-lived nature of the interlayer excitons in our device results in them diffusing over a distance of five micrometres. Within our device, we further demonstrate the ability to manipulate exciton dynamics by creating electrically reconfigurable confining and repulsive potentials for the exciton flux. Our results make a strong case for integrating two-dimensional materials in future excitonic devices to enable operation at room temperature.

Suggested Citation

  • Dmitrii Unuchek & Alberto Ciarrocchi & Ahmet Avsar & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2018. "Room-temperature electrical control of exciton flux in a van der Waals heterostructure," Nature, Nature, vol. 560(7718), pages 340-344, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7718:d:10.1038_s41586-018-0357-y
    DOI: 10.1038/s41586-018-0357-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0357-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0357-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Rosati & Robert Schmidt & Samuel Brem & Raül Perea-Causín & Iris Niehues & Johannes Kern & Johann A. Preuß & Robert Schneider & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ermin , 2021. "Dark exciton anti-funneling in atomically thin semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Riya Sebait & Roberto Rosati & Seok Joon Yun & Krishna P. Dhakal & Samuel Brem & Chandan Biswas & Alexander Puretzky & Ermin Malic & Young Hee Lee, 2023. "Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7718:d:10.1038_s41586-018-0357-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.