IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7716d10.1038_s41586-018-0341-6.html
   My bibliography  Save this article

Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides

Author

Listed:
  • Xiaoxiao Wan

    (Washington University School of Medicine)

  • Bernd H. Zinselmeyer

    (Washington University School of Medicine)

  • Pavel N. Zakharov

    (Washington University School of Medicine)

  • Anthony N. Vomund

    (Washington University School of Medicine)

  • Ruth Taniguchi

    (University of California, San Francisco)

  • Laura Santambrogio

    (Albert Einstein College of Medicine)

  • Mark S. Anderson

    (University of California, San Francisco)

  • Cheryl F. Lichti

    (Washington University School of Medicine)

  • Emil R. Unanue

    (Washington University School of Medicine)

Abstract

Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12–20 segment of the insulin B-chain (B:12–20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13–214. CD4 T cells that recognize B:12–20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13–21 have only a minor role in autoimmunity3–5. Although presentation of B:12–20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in β-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues.

Suggested Citation

  • Xiaoxiao Wan & Bernd H. Zinselmeyer & Pavel N. Zakharov & Anthony N. Vomund & Ruth Taniguchi & Laura Santambrogio & Mark S. Anderson & Cheryl F. Lichti & Emil R. Unanue, 2018. "Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides," Nature, Nature, vol. 560(7716), pages 107-111, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0341-6
    DOI: 10.1038/s41586-018-0341-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0341-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0341-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Hu & Anthony N. Vomund & Orion J. Peterson & Neetu Srivastava & Tiandao Li & Lisa Kain & Wandy L. Beatty & Bo Zhang & Chyi-Song Hsieh & Luc Teyton & Cheryl F. Lichti & Emil R. Unanue & Xiaoxiao Wa, 2024. "Crinophagic granules in pancreatic β cells contribute to mouse autoimmune diabetes by diversifying pathogenic epitope repertoire," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0341-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.