IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7716d10.1038_s41586-018-0339-0.html
   My bibliography  Save this article

Photoswitching topology in polymer networks with metal–organic cages as crosslinks

Author

Listed:
  • Yuwei Gu

    (Massachusetts Institute of Technology)

  • Eric A. Alt

    (Massachusetts Institute of Technology)

  • Heng Wang

    (University of South Florida)

  • Xiaopeng Li

    (University of South Florida)

  • Adam P. Willard

    (Massachusetts Institute of Technology)

  • Jeremiah A. Johnson

    (Massachusetts Institute of Technology)

Abstract

Polymer networks can have a range of desirable properties such as mechanical strength, wide compositional diversity between different materials, permanent porosity, convenient processability and broad solvent compatibility1,2. Designing polymer networks from the bottom up with new structural motifs and chemical compositions can be used to impart dynamic features such as malleability or self-healing, or to allow the material to respond to environmental stimuli3–8. However, many existing systems exhibit only one operational state that is defined by the material’s composition and topology3–6; or their responsiveness may be irreversible7,9,10 and limited to a single network property11,12 (such as stiffness). Here we use cooperative self-assembly as a design principle to prepare a material that can be switched between two topological states. By using networks of polymer-linked metal–organic cages in which the cages change shape and size on irradiation, we can reversibly switch the network topology with ultraviolet or green light. This photoswitching produces coherent changes in several network properties at once, including branch functionality, junction fluctuations, defect tolerance, shear modulus, stress-relaxation behaviour and self-healing. Topology-switching materials could prove useful in fields such as soft robotics and photo-actuators and also provide model systems for fundamental polymer physics studies.

Suggested Citation

  • Yuwei Gu & Eric A. Alt & Heng Wang & Xiaopeng Li & Adam P. Willard & Jeremiah A. Johnson, 2018. "Photoswitching topology in polymer networks with metal–organic cages as crosslinks," Nature, Nature, vol. 560(7716), pages 65-69, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0339-0
    DOI: 10.1038/s41586-018-0339-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0339-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0339-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaishuai Zhu & Maoji Zhao & Hongru Zhou & Yingfeng Wen & Yong Wang & Yonggui Liao & Xingping Zhou & Xiaolin Xie, 2023. "One-pot synthesis of hyperbranched polymers via visible light regulated switchable catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Hailei Zhang & Boyan Tang & Bo Zhang & Kai Huang & Shanshan Li & Yuangong Zhang & Haisong Zhang & Libin Bai & Yonggang Wu & Yongqiang Cheng & Yanmin Yang & Gang Han, 2024. "X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7716:d:10.1038_s41586-018-0339-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.