Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-018-0345-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhongwei Xin & Mingjie Lin & Zhixing Hao & Di Chen & Yongyuan Chen & Xiaoke Chen & Xia Xu & Jinfan Li & Dang Wu & Ying Chai & Pin Wu, 2022. "The immune landscape of human thymic epithelial tumors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Qiang Yu & Igor Gamayun & Philipp Wartenberg & Qian Zhang & Sen Qiao & Soumya Kusumakshi & Sarah Candlish & Viktoria Götz & Shuping Wen & Debajyoti Das & Amanda Wyatt & Vanessa Wahl & Fabien Ectors & , 2023. "Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Ryan N. O’Keefe & Annalisa L. E. Carli & David Baloyan & David Chisanga & Wei Shi & Shoukat Afshar-Sterle & Moritz F. Eissmann & Ashleigh R. Poh & Bhupinder Pal & Cyril Seillet & Richard M. Locksley &, 2023. "A tuft cell - ILC2 signaling circuit provides therapeutic targets to inhibit gastric metaplasia and tumor development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Fabian Klein & Clara Veiga-Villauriz & Anastasiya Börsch & Stefano Maio & Sam Palmer & Fatima Dhalla & Adam E. Handel & Saulius Zuklys & Irene Calvo-Asensio & Lucas Musette & Mary E. Deadman & Andrea , 2023. "Combined multidimensional single-cell protein and RNA profiling dissects the cellular and functional heterogeneity of thymic epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Beth Lucas & Andrea J. White & Fabian Klein & Clara Veiga-Villauriz & Adam Handel & Andrea Bacon & Emilie J. Cosway & Kieran D. James & Sonia M. Parnell & Izumi Ohigashi & Yousuke Takahama & William E, 2023. "Embryonic keratin19+ progenitors generate multiple functionally distinct progeny to maintain epithelial diversity in the adult thymus medulla," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7715:d:10.1038_s41586-018-0345-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.