IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7712d10.1038_s41586-018-0234-8.html
   My bibliography  Save this article

Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis

Author

Listed:
  • Yufan Liang

    (Merck Center for Catalysis at Princeton University)

  • Xiaheng Zhang

    (Merck Center for Catalysis at Princeton University)

  • David W. C. MacMillan

    (Merck Center for Catalysis at Princeton University)

Abstract

Over the past three decades, considerable progress has been made in the development of methods to construct sp2 carbon–nitrogen (C–N) bonds using palladium, copper or nickel catalysis1,2. However, the incorporation of alkyl substrates to form sp3 C–N bonds remains one of the major challenges in the field of cross-coupling chemistry. Here we demonstrate that the synergistic combination of copper catalysis and photoredox catalysis can provide a general platform from which to address this challenge. This cross-coupling system uses naturally abundant alkyl carboxylic acids and commercially available nitrogen nucleophiles as coupling partners. It is applicable to a wide variety of primary, secondary and tertiary alkyl carboxylic acids (through iodonium activation), as well as a vast array of nitrogen nucleophiles: nitrogen heterocycles, amides, sulfonamides and anilines can undergo C–N coupling to provide N-alkyl products in good to excellent efficiency, at room temperature and on short timescales (five minutes to one hour). We demonstrate that this C–N coupling protocol proceeds with high regioselectivity using substrates that contain several amine groups, and can also be applied to complex drug molecules, enabling the rapid construction of molecular complexity and the late-stage functionalization of bioactive pharmaceuticals.

Suggested Citation

  • Yufan Liang & Xiaheng Zhang & David W. C. MacMillan, 2018. "Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis," Nature, Nature, vol. 559(7712), pages 83-88, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0234-8
    DOI: 10.1038/s41586-018-0234-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0234-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0234-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heather A. Hintz & Christo S. Sevov, 2022. "Catalyst-controlled functionalization of carboxylic acids by electrooxidation of self-assembled carboxyl monolayers," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0234-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.