IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7709d10.1038_s41586-018-0199-7.html
   My bibliography  Save this article

EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle

Author

Listed:
  • Steven D. Cappell

    (Stanford University School of Medicine
    Center for Cancer Research, National Cancer Institute)

  • Kevin G. Mark

    (University of California at Berkeley
    Howard Hughes Medical Institute)

  • Damien Garbett

    (Stanford University School of Medicine)

  • Lindsey R. Pack

    (Stanford University School of Medicine)

  • Michael Rape

    (University of California at Berkeley
    Howard Hughes Medical Institute)

  • Tobias Meyer

    (Stanford University School of Medicine)

Abstract

Mammalian cells integrate mitogen and stress signalling before the end of G1 phase to determine whether or not they enter the cell cycle1–4. Before cells can replicate their DNA in S phase, they have to activate cyclin-dependent kinases (CDKs), induce an E2F transcription program and inactivate the anaphase-promoting complex (APC/CCDH1, also known as the cyclosome), which is an E3 ubiquitin ligase that contains the co-activator CDH1 (also known as FZR, encoded by FZR1). It was recently shown that stress can return cells to quiescence after CDK2 activation and E2F induction but not after inactivation of APC/CCDH1, which suggests that APC/CCDH1 inactivation is the point of no return for cell-cycle entry 3 . Rapid inactivation of APC/CCDH1 requires early mitotic inhibitor 1 (EMI1)3,5, but the molecular mechanism that controls this cell-cycle commitment step is unknown. Here we show using human cell models that cell-cycle commitment is mediated by an EMI1–APC/CCDH1 dual-negative feedback switch, in which EMI1 is both a substrate and an inhibitor of APC/CCDH1. The inactivation switch triggers a transition between a state with low EMI1 levels and high APC/CCDH1 activity during G1 and a state with high EMI1 levels and low APC/CCDH1 activity during S and G2. Cell-based analysis, in vitro reconstitution and modelling data show that the underlying dual-negative feedback is bistable and represents a robust irreversible switch. Our study suggests that mammalian cells commit to the cell cycle by increasing CDK2 activity and EMI1 mRNA expression to trigger a one-way APC/CCDH1 inactivation switch that is mediated by EMI1 transitioning from acting as a substrate of APC/CCDH1 to being an inhibitor of APC/CCDH1.

Suggested Citation

  • Steven D. Cappell & Kevin G. Mark & Damien Garbett & Lindsey R. Pack & Michael Rape & Tobias Meyer, 2018. "EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle," Nature, Nature, vol. 558(7709), pages 313-317, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0199-7
    DOI: 10.1038/s41586-018-0199-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0199-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0199-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shizhong Ke & Fabin Dang & Lin Wang & Jia-Yun Chen & Mandar T. Naik & Wenxue Li & Abhishek Thavamani & Nami Kim & Nandita M. Naik & Huaxiu Sui & Wei Tang & Chenxi Qiu & Kazuhiro Koikawa & Felipe Batal, 2024. "Reciprocal antagonism of PIN1-APC/CCDH1 governs mitotic protein stability and cell cycle entry," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Debasish Paul & Stephen C. Kales & James A. Cornwell & Marwa M. Afifi & Ganesha Rai & Alexey Zakharov & Anton Simeonov & Steven D. Cappell, 2022. "Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0199-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.