IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7708d10.1038_s41586-018-0150-y.html
   My bibliography  Save this article

Self-organization of a human organizer by combined Wnt and Nodal signalling

Author

Listed:
  • I. Martyn

    (The Rockefeller University
    The Rockefeller University)

  • T. Y. Kanno

    (The Rockefeller University)

  • A. Ruzo

    (The Rockefeller University)

  • E. D. Siggia

    (The Rockefeller University)

  • A. H. Brivanlou

    (The Rockefeller University)

Abstract

In amniotes, the development of the primitive streak and its accompanying ‘organizer’ define the first stages of gastrulation. Although these structures have been characterized in detail in model organisms, the human primitive streak and organizer remain a mystery. When stimulated with BMP4, micropatterned colonies of human embryonic stem cells self-organize to generate early embryonic germ layers1. Here we show that, in the same type of colonies, Wnt signalling is sufficient to induce a primitive streak, and stimulation with Wnt and Activin is sufficient to induce an organizer, as characterized by embryo-like sharp boundary formation, markers of epithelial-to-mesenchymal transition and expression of the organizer-specific transcription factor GSC. Moreover, when grafted into chick embryos, human stem cell colonies treated with Wnt and Activin induce and contribute autonomously to a secondary axis while inducing a neural fate in the host. This fulfils the most stringent functional criteria for an organizer, and its discovery represents a milestone in human embryology.

Suggested Citation

  • I. Martyn & T. Y. Kanno & A. Ruzo & E. D. Siggia & A. H. Brivanlou, 2018. "Self-organization of a human organizer by combined Wnt and Nodal signalling," Nature, Nature, vol. 558(7708), pages 132-135, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7708:d:10.1038_s41586-018-0150-y
    DOI: 10.1038/s41586-018-0150-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0150-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0150-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Anchel de Jaime-Soguero & Janina Hattemer & Anja Bufe & Alexander Haas & Jeroen Berg & Vincent Batenburg & Biswajit Das & Barbara Marco & Stefania Androulaki & Nicolas Böhly & Jonathan J. M. Landry & , 2024. "Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Luke Simpson & Andrew Strange & Doris Klisch & Sophie Kraunsoe & Takuya Azami & Daniel Goszczynski & Triet Minh & Benjamin Planells & Nadine Holmes & Fei Sang & Sonal Henson & Matthew Loose & Jennifer, 2024. "A single-cell atlas of pig gastrulation as a resource for comparative embryology," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Feng Lin & Xia Li & Shiyu Sun & Zhongyi Li & Chenglin Lv & Jianbo Bai & Lin Song & Yizhao Han & Bo Li & Jianping Fu & Yue Shao, 2023. "Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Haipeng Fu & Tingyu Wang & Xiaohui Kong & Kun Yan & Yang Yang & Jingyi Cao & Yafei Yuan & Nan Wang & Kehkooi Kee & Zhi John Lu & Qiaoran Xi, 2022. "A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Hyung Chul Lee & Nidia M. M. Oliveira & Cato Hastings & Peter Baillie-Benson & Adam A. Moverley & Hui-Chun Lu & Yi Zheng & Elise L. Wilby & Timothy T. Weil & Karen M. Page & Jianping Fu & Naomi Moris , 2024. "Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Seth Teague & Gillian Primavera & Bohan Chen & Zong-Yuan Liu & LiAng Yao & Emily Freeburne & Hina Khan & Kyoung Jo & Craig Johnson & Idse Heemskerk, 2024. "Time-integrated BMP signaling determines fate in a stem cell model for early human development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7708:d:10.1038_s41586-018-0150-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.