IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v557y2018i7706d10.1038_s41586-018-0127-x.html
   My bibliography  Save this article

Inference of ecological and social drivers of human brain-size evolution

Author

Listed:
  • Mauricio González-Forero

    (University of St Andrews)

  • Andy Gardner

    (University of St Andrews)

Abstract

The human brain is unusually large. It has tripled in size from Australopithecines to modern humans1 and has become almost six times larger than expected for a placental mammal of human size2. Brains incur high metabolic costs3 and accordingly a long-standing question is why the large human brain has evolved4. The leading hypotheses propose benefits of improved cognition for overcoming ecological5–7, social8–10 or cultural11–14 challenges. However, these hypotheses are typically assessed using correlative analyses, and establishing causes for brain-size evolution remains difficult15,16. Here we introduce a metabolic approach that enables causal assessment of social hypotheses for brain-size evolution. Our approach yields quantitative predictions for brain and body size from formalized social hypotheses given empirical estimates of the metabolic costs of the brain. Our model predicts the evolution of adult Homo sapiens-sized brains and bodies when individuals face a combination of 60% ecological, 30% cooperative and 10% between-group competitive challenges, and suggests that between-individual competition has been unimportant for driving human brain-size evolution. Moreover, our model indicates that brain expansion in Homo was driven by ecological rather than social challenges, and was perhaps strongly promoted by culture. Our metabolic approach thus enables causal assessments that refine, refute and unify hypotheses of brain-size evolution.

Suggested Citation

  • Mauricio González-Forero & Andy Gardner, 2018. "Inference of ecological and social drivers of human brain-size evolution," Nature, Nature, vol. 557(7706), pages 554-557, May.
  • Handle: RePEc:nat:nature:v:557:y:2018:i:7706:d:10.1038_s41586-018-0127-x
    DOI: 10.1038/s41586-018-0127-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0127-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0127-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauricio González-Forero, 2024. "Evolutionary–developmental (evo-devo) dynamics of hominin brain size," Nature Human Behaviour, Nature, vol. 8(7), pages 1321-1333, July.
    2. Chu, Angus C., 2025. "Human brain evolution in a Malthusian economy," Macroeconomic Dynamics, Cambridge University Press, vol. 29, pages 1-1, January.
    3. Dominik Deffner & David Mezey & Benjamin Kahl & Alexander Schakowski & Pawel Romanczuk & Charley M. Wu & Ralf H. J. M. Kurvers, 2024. "Collective incentives reduce over-exploitation of social information in unconstrained human groups," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:557:y:2018:i:7706:d:10.1038_s41586-018-0127-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.