IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v557y2018i7703d10.1038_s41586-018-0058-6.html
   My bibliography  Save this article

Cryo-EM structure of the gasdermin A3 membrane pore

Author

Listed:
  • Jianbin Ruan

    (Boston Children’s Hospital
    Harvard Medical School)

  • Shiyu Xia

    (Boston Children’s Hospital
    Harvard Medical School)

  • Xing Liu

    (Boston Children’s Hospital
    Harvard Medical School)

  • Judy Lieberman

    (Boston Children’s Hospital
    Harvard Medical School)

  • Hao Wu

    (Boston Children’s Hospital
    Harvard Medical School)

Abstract

Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel β-barrel is formed by two β-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning β-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.

Suggested Citation

  • Jianbin Ruan & Shiyu Xia & Xing Liu & Judy Lieberman & Hao Wu, 2018. "Cryo-EM structure of the gasdermin A3 membrane pore," Nature, Nature, vol. 557(7703), pages 62-67, May.
  • Handle: RePEc:nat:nature:v:557:y:2018:i:7703:d:10.1038_s41586-018-0058-6
    DOI: 10.1038/s41586-018-0058-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0058-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0058-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisa D. J. Schiffelers & Yonas M. Tesfamariam & Lea-Marie Jenster & Stefan Diehl & Sophie C. Binder & Sabine Normann & Jonathan Mayr & Steffen Pritzl & Elena Hagelauer & Anja Kopp & Assaf Alon & Matth, 2024. "Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Hang Yin & Jian Zheng & Qiuqiu He & Xuan Zhang & Xuzichao Li & Yongjian Ma & Xiao Liang & Jiaqi Gao & Benjamin L. Kocsis & Zhuang Li & Xiang Liu & Neal M. Alto & Long Li & Heng Zhang, 2023. "Insights into the GSDMB-mediated cellular lysis and its targeting by IpaH7.8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:557:y:2018:i:7703:d:10.1038_s41586-018-0058-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.