IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v556y2018i7702d10.1038_s41586-018-0042-1.html
   My bibliography  Save this article

Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction

Author

Listed:
  • Alison E. Wendlandt

    (Harvard University)

  • Prithvi Vangal

    (Harvard University)

  • Eric N. Jacobsen

    (Harvard University)

Abstract

The unimolecular nucleophilic substitution (SN1) mechanism features prominently in every introductory organic chemistry course. In principle, stepwise displacement of a leaving group by a nucleophile via a carbocationic intermediate enables the construction of highly congested carbon centres. However, the intrinsic instability and high reactivity of the carbocationic intermediates make it very difficult to control product distributions and stereoselectivity in reactions that proceed via SN1 pathways. Here we report asymmetric catalysis of an SN1-type reaction mechanism that results in the enantioselective construction of quaternary stereocentres from racemic precursors. The transformation relies on the synergistic action of a chiral hydrogen-bond-donor catalyst with a strong Lewis-acid promoter to mediate the formation of tertiary carbocationic intermediates at low temperature and to achieve high levels of control over reaction enantioselectivity and product distribution. This work provides a foundation for the enantioconvergent synthesis of other fully substituted carbon stereocentres.

Suggested Citation

  • Alison E. Wendlandt & Prithvi Vangal & Eric N. Jacobsen, 2018. "Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction," Nature, Nature, vol. 556(7702), pages 447-451, April.
  • Handle: RePEc:nat:nature:v:556:y:2018:i:7702:d:10.1038_s41586-018-0042-1
    DOI: 10.1038/s41586-018-0042-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0042-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0042-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Ge & Chi Zhang & Chengkai Pan & Ding-Xing Wang & Dong-Ying Liu & Zhi-Qiang Li & Pingkang Shen & Lifang Tian & Chao Feng, 2022. "Photoredox-catalyzed C–C bond cleavage of cyclopropanes for the formation of C(sp3)–heteroatom bonds," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yulin Zhang & Yoshiaki Tanabe & Shogo Kuriyama & Ken Sakata & Yoshiaki Nishibayashi, 2023. "Interplay of diruthenium catalyst in controlling enantioselective propargylic substitution reactions with visible light-generated alkyl radicals," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Jianjian Liu & Mali Zhou & Rui Deng & Pengcheng Zheng & Yonggui Robin Chi, 2022. "Chalcogen bond-guided conformational isomerization enables catalytic dynamic kinetic resolution of sulfoxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Sifan Yu & Wenju Chang & Ruyu Hua & Xiaoting Jie & Mengchu Zhang & Wenxuan Zhao & Jinzhou Chen & Dan Zhang & Huang Qiu & Yong Liang & Wenhao Hu, 2022. "An enantioselective four-component reaction via assembling two reaction intermediates," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:556:y:2018:i:7702:d:10.1038_s41586-018-0042-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.