IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v555y2018i7698d10.1038_nature25769.html
   My bibliography  Save this article

A coherent spin–photon interface in silicon

Author

Listed:
  • X. Mi

    (Princeton University)

  • M. Benito

    (University of Konstanz)

  • S. Putz

    (Princeton University)

  • D. M. Zajac

    (Princeton University)

  • J. M. Taylor

    (Joint Quantum Institute/NIST)

  • Guido Burkard

    (University of Konstanz)

  • J. R. Petta

    (Princeton University)

Abstract

Electron spins in silicon quantum dots are attractive systems for quantum computing owing to their long coherence times and the promise of rapid scaling of the number of dots in a system using semiconductor fabrication techniques. Although nearest-neighbour exchange coupling of two spins has been demonstrated, the interaction of spins via microwave-frequency photons could enable long-distance spin–spin coupling and connections between arbitrary pairs of qubits (‘all-to-all’ connectivity) in a spin-based quantum processor. Realizing coherent spin–photon coupling is challenging because of the small magnetic-dipole moment of a single spin, which limits magnetic-dipole coupling rates to less than 1 kilohertz. Here we demonstrate strong coupling between a single spin in silicon and a single microwave-frequency photon, with spin–photon coupling rates of more than 10 megahertz. The mechanism that enables the coherent spin–photon interactions is based on spin–charge hybridization in the presence of a magnetic-field gradient. In addition to spin–photon coupling, we demonstrate coherent control and dispersive readout of a single spin. These results open up a direct path to entangling single spins using microwave-frequency photons.

Suggested Citation

  • X. Mi & M. Benito & S. Putz & D. M. Zajac & J. M. Taylor & Guido Burkard & J. R. Petta, 2018. "A coherent spin–photon interface in silicon," Nature, Nature, vol. 555(7698), pages 599-603, March.
  • Handle: RePEc:nat:nature:v:555:y:2018:i:7698:d:10.1038_nature25769
    DOI: 10.1038/nature25769
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25769
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. J. H. Ungerer & A. Pally & A. Kononov & S. Lehmann & J. Ridderbos & P. P. Potts & C. Thelander & K. A. Dick & V. F. Maisi & P. Scarlino & A. Baumgartner & C. Schönenberger, 2024. "Strong coupling between a microwave photon and a singlet-triplet qubit," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Franco Palma & Fabian Oppliger & Wonjin Jang & Stefano Bosco & Marián Janík & Stefano Calcaterra & Georgios Katsaros & Giovanni Isella & Daniel Loss & Pasquale Scarlino, 2024. "Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:555:y:2018:i:7698:d:10.1038_nature25769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.