IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v555y2018i7694d10.1038_nature25484.html
   My bibliography  Save this article

Probing the interatomic potential of solids with strong-field nonlinear phononics

Author

Listed:
  • A. von Hoegen

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • R. Mankowsky

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • M. Fechner

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • M. Först

    (Max Planck Institute for the Structure and Dynamics of Matter)

  • A. Cavalleri

    (Max Planck Institute for the Structure and Dynamics of Matter
    University of Oxford, Clarendon Laboratory)

Abstract

Ultrashort mid-infrared laser pulses can drive atoms far from their equilibrium positions in LiNbO3, exciting high phonon harmonics and providing a way to map the interatomic potential.

Suggested Citation

  • A. von Hoegen & R. Mankowsky & M. Fechner & M. Först & A. Cavalleri, 2018. "Probing the interatomic potential of solids with strong-field nonlinear phononics," Nature, Nature, vol. 555(7694), pages 79-82, March.
  • Handle: RePEc:nat:nature:v:555:y:2018:i:7694:d:10.1038_nature25484
    DOI: 10.1038/nature25484
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25484
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Caprini & Hartmut Löwen & R. Matthias Geilhufe, 2024. "Ultrafast entropy production in pump-probe experiments," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jun Nishida & Samuel C. Johnson & Peter T. S. Chang & Dylan M. Wharton & Sven A. Dönges & Omar Khatib & Markus B. Raschke, 2022. "Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Tianchuang Luo & Batyr Ilyas & A. von Hoegen & Youjin Lee & Jaena Park & Je-Geun Park & Nuh Gedik, 2024. "Time-of-flight detection of terahertz phonon-polariton," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Zhenya Zhang & Fumiya Sekiguchi & Takahiro Moriyama & Shunsuke C. Furuya & Masahiro Sato & Takuya Satoh & Yu Mukai & Koichiro Tanaka & Takafumi Yamamoto & Hiroshi Kageyama & Yoshihiko Kanemitsu & Hide, 2023. "Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Jared S. Ginsberg & M. Mehdi Jadidi & Jin Zhang & Cecilia Y. Chen & Nicolas Tancogne-Dejean & Sang Hoon Chae & Gauri N. Patwardhan & Lede Xian & Kenji Watanabe & Takashi Taniguchi & James Hone & Angel, 2023. "Phonon-enhanced nonlinearities in hexagonal boron nitride," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:555:y:2018:i:7694:d:10.1038_nature25484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.