IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v552y2017i7685d10.1038_nature25002.html
   My bibliography  Save this article

Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

Author

Listed:
  • Thach T. Nguyen

    (Merkert Chemistry Center, Boston College, Chestnut Hill)

  • Ming Joo Koh

    (Merkert Chemistry Center, Boston College, Chestnut Hill)

  • Tyler J. Mann

    (Merkert Chemistry Center, Boston College, Chestnut Hill)

  • Richard R. Schrock

    (Massachusetts Institute of Technology, Cambridge)

  • Amir H. Hoveyda

    (Merkert Chemistry Center, Boston College, Chestnut Hill)

Abstract

Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

Suggested Citation

  • Thach T. Nguyen & Ming Joo Koh & Tyler J. Mann & Richard R. Schrock & Amir H. Hoveyda, 2017. "Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis," Nature, Nature, vol. 552(7685), pages 347-354, December.
  • Handle: RePEc:nat:nature:v:552:y:2017:i:7685:d:10.1038_nature25002
    DOI: 10.1038/nature25002
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25002
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Zhu & Huifeng Yue & Magnus Rueping, 2022. "Nickel catalyzed multicomponent stereodivergent synthesis of olefins enabled by electrochemistry, photocatalysis and photo-electrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jie Wang & Jun Gu & Jia-Yu Zou & Meng-Jie Zhang & Rui Shen & Zhiwen Ye & Ping-Xun Xu & Ying He, 2024. "Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:552:y:2017:i:7685:d:10.1038_nature25002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.