IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v551y2017i7679d10.1038_nature24282.html
   My bibliography  Save this article

Structures of transcription pre-initiation complex with TFIIH and Mediator

Author

Listed:
  • S. Schilbach

    (Max Planck Institute for Biophysical Chemistry)

  • M. Hantsche

    (Max Planck Institute for Biophysical Chemistry)

  • D. Tegunov

    (Max Planck Institute for Biophysical Chemistry)

  • C. Dienemann

    (Max Planck Institute for Biophysical Chemistry)

  • C. Wigge

    (Max Planck Institute for Biophysical Chemistry)

  • H. Urlaub

    (Max Planck Institute for Biophysical Chemistry
    University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group)

  • P. Cramer

    (Max Planck Institute for Biophysical Chemistry)

Abstract

For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC–core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the ‘E-bridge’ helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC–core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.

Suggested Citation

  • S. Schilbach & M. Hantsche & D. Tegunov & C. Dienemann & C. Wigge & H. Urlaub & P. Cramer, 2017. "Structures of transcription pre-initiation complex with TFIIH and Mediator," Nature, Nature, vol. 551(7679), pages 204-209, November.
  • Handle: RePEc:nat:nature:v:551:y:2017:i:7679:d:10.1038_nature24282
    DOI: 10.1038/nature24282
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24282
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jina Yu & Chunli Yan & Thomas Dodd & Chi-Lin Tsai & John A. Tainer & Susan E. Tsutakawa & Ivaylo Ivanov, 2023. "Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jordy Homing Lam & Aiichiro Nakano & Vsevolod Katritch, 2024. "Scalable computation of anisotropic vibrations for large macromolecular assemblies," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:551:y:2017:i:7679:d:10.1038_nature24282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.