IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v546y2017i7657d10.1038_nature22379.html
   My bibliography  Save this article

Nutrient acquisition strategies of mammalian cells

Author

Listed:
  • Wilhelm Palm

    (Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center)

  • Craig B. Thompson

    (Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center)

Abstract

Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

Suggested Citation

  • Wilhelm Palm & Craig B. Thompson, 2017. "Nutrient acquisition strategies of mammalian cells," Nature, Nature, vol. 546(7657), pages 234-242, June.
  • Handle: RePEc:nat:nature:v:546:y:2017:i:7657:d:10.1038_nature22379
    DOI: 10.1038/nature22379
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22379
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edoardo Ratto & S. Roy Chowdhury & Nora S. Siefert & Martin Schneider & Marten Wittmann & Dominic Helm & Wilhelm Palm, 2022. "Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Nicole Kiweler & Catherine Delbrouck & Vitaly I. Pozdeev & Laura Neises & Leticia Soriano-Baguet & Kim Eiden & Feng Xian & Mohaned Benzarti & Lara Haase & Eric Koncina & Maryse Schmoetten & Christian , 2022. "Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:546:y:2017:i:7657:d:10.1038_nature22379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.