IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v545y2017i7653d10.1038_nature22062.html
   My bibliography  Save this article

Asia’s glaciers are a regionally important buffer against drought

Author

Listed:
  • Hamish D. Pritchard

    (British Antarctic Survey)

Abstract

The high mountains of Asia—encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains—have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

Suggested Citation

  • Hamish D. Pritchard, 2017. "Asia’s glaciers are a regionally important buffer against drought," Nature, Nature, vol. 545(7653), pages 169-174, May.
  • Handle: RePEc:nat:nature:v:545:y:2017:i:7653:d:10.1038_nature22062
    DOI: 10.1038/nature22062
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22062
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Liu & Zhongyun Ni & Yinbing Zhao & Guoli Zhou & Yuhao Luo & Shuai Li & Dong Wang & Shaowen Zhang, 2022. "Spatial-Temporal Evolution and Driving Forces of Drying Trends on the Qinghai-Tibet Plateau Based on Geomorphological Division," IJERPH, MDPI, vol. 19(13), pages 1-31, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:545:y:2017:i:7653:d:10.1038_nature22062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.