IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v544y2017i7651d10.1038_nature22036.html
   My bibliography  Save this article

Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure

Author

Listed:
  • Xiaoyu Liu

    (Ministry of Education Key Laboratory of Protein Science, Tsinghua University
    School of Life Sciences, Tsinghua University
    Tsinghua-Peking Joint Center for Life Sciences)

  • Meijing Li

    (Ministry of Education Key Laboratory of Protein Science, Tsinghua University
    School of Life Sciences, Tsinghua University
    Tsinghua-Peking Joint Center for Life Sciences)

  • Xian Xia

    (Ministry of Education Key Laboratory of Protein Science, Tsinghua University
    School of Life Sciences, Tsinghua University)

  • Xueming Li

    (Ministry of Education Key Laboratory of Protein Science, Tsinghua University
    School of Life Sciences, Tsinghua University
    Tsinghua-Peking Joint Center for Life Sciences)

  • Zhucheng Chen

    (Ministry of Education Key Laboratory of Protein Science, Tsinghua University
    School of Life Sciences, Tsinghua University)

Abstract

Chromatin remodellers are helicase-like, ATP-dependent enzymes that alter chromatin structure and nucleosome positions to allow regulatory proteins access to DNA. Here we report the cryo-electron microscopy structure of chromatin remodeller Switch/sucrose non-fermentable (SWI2/SNF2) from Saccharomyces cerevisiae bound to the nucleosome. The structure shows that the two core domains of Snf2 are realigned upon nucleosome binding, suggesting activation of the enzyme. The core domains contact each other through two induced Brace helices, which are crucial for coupling ATP hydrolysis to chromatin remodelling. Snf2 binds to the phosphate backbones of one DNA gyre of the nucleosome mainly through its helicase motifs within the major domain cleft, suggesting a conserved mechanism of substrate engagement across different remodellers. Snf2 contacts the second DNA gyre via a positively charged surface, providing a mechanism to anchor the remodeller at a fixed position of the nucleosome. Snf2 locally deforms nucleosomal DNA at the site of binding, priming the substrate for the remodelling reaction. Together, these findings provide mechanistic insights into chromatin remodelling.

Suggested Citation

  • Xiaoyu Liu & Meijing Li & Xian Xia & Xueming Li & Zhucheng Chen, 2017. "Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure," Nature, Nature, vol. 544(7651), pages 440-445, April.
  • Handle: RePEc:nat:nature:v:544:y:2017:i:7651:d:10.1038_nature22036
    DOI: 10.1038/nature22036
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22036
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunli Yan & Thomas Dodd & Jina Yu & Bernice Leung & Jun Xu & Juntaek Oh & Dong Wang & Ivaylo Ivanov, 2021. "Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Dhurjhoti Saha & Solomon Hailu & Arjan Hada & Junwoo Lee & Jie Luo & Jeff A. Ranish & Yuan-chi Lin & Kyle Feola & Jim Persinger & Abhinav Jain & Bin Liu & Yue Lu & Payel Sen & Blaine Bartholomew, 2023. "The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Un Seng Chio & Eugene Palovcak & Anton A. A. Smith & Henriette Autzen & Elise N. Muñoz & Zanlin Yu & Feng Wang & David A. Agard & Jean-Paul Armache & Geeta J. Narlikar & Yifan Cheng, 2024. "Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yichen Zhong & Hakimeh Moghaddas Sani & Bishnu P. Paudel & Jason K. K. Low & Ana P. G. Silva & Stefan Mueller & Chandrika Deshpande & Santosh Panjikar & Xavier J. Reid & Max J. Bedward & Antoine M. Oi, 2022. "The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:544:y:2017:i:7651:d:10.1038_nature22036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.