IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v539y2016i7628d10.1038_nature20415.html
   My bibliography  Save this article

Mammalian prions and their wider relevance in neurodegenerative diseases

Author

Listed:
  • John Collinge

    (Medical Research Council Prion Unit, University College London Institute of Neurology
    University College London Institute of Neurology)

Abstract

Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.

Suggested Citation

  • John Collinge, 2016. "Mammalian prions and their wider relevance in neurodegenerative diseases," Nature, Nature, vol. 539(7628), pages 217-226, November.
  • Handle: RePEc:nat:nature:v:539:y:2016:i:7628:d:10.1038_nature20415
    DOI: 10.1038/nature20415
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature20415
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature20415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon W. Manka & Wenjuan Zhang & Adam Wenborn & Jemma Betts & Susan Joiner & Helen R. Saibil & John Collinge & Jonathan D. F. Wadsworth, 2022. "2.7 Å cryo-EM structure of ex vivo RML prion fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Christine Rother & Ruth E. Uhlmann & Stephan A. Müller & Juliane Schelle & Angelos Skodras & Ulrike Obermüller & Lisa M. Häsler & Marius Lambert & Frank Baumann & Ying Xu & Carina Bergmann & Giulia Sa, 2022. "Experimental evidence for temporal uncoupling of brain Aβ deposition and neurodegenerative sequelae," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:539:y:2016:i:7628:d:10.1038_nature20415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.