IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v538y2016i7624d10.1038_nature19764.html
   My bibliography  Save this article

In vitro and ex vivo strategies for intracellular delivery

Author

Listed:
  • Martin P. Stewart

    (Massachusetts Institute of Technology
    The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Armon Sharei

    (Massachusetts Institute of Technology
    The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
    Harvard Medical School
    The Ragon Institute of MGH, MIT and Harvard)

  • Xiaoyun Ding

    (Massachusetts Institute of Technology
    The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Gaurav Sahay

    (Collaborative Life Science Building, College of Pharmacy, Oregon State University)

  • Robert Langer

    (Massachusetts Institute of Technology
    The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Klavs F. Jensen

    (Massachusetts Institute of Technology)

Abstract

Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

Suggested Citation

  • Martin P. Stewart & Armon Sharei & Xiaoyun Ding & Gaurav Sahay & Robert Langer & Klavs F. Jensen, 2016. "In vitro and ex vivo strategies for intracellular delivery," Nature, Nature, vol. 538(7624), pages 183-192, October.
  • Handle: RePEc:nat:nature:v:538:y:2016:i:7624:d:10.1038_nature19764
    DOI: 10.1038/nature19764
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19764
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingen Zhu & Himanshu Batra & Neeti Ananthaswamy & Marthandan Mahalingam & Pan Tao & Xiaorong Wu & Wenzheng Guo & Andrei Fokine & Venigalla B. Rao, 2023. "Design of bacteriophage T4-based artificial viral vectors for human genome remodeling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Erwin De Genst & Kylie S. Foo & Yao Xiao & Eduarde Rohner & Emma de Vries & Jesper Sohlmér & Nevin Witman & Alejandro Hidalgo & Terje R. S. Kolstad & William E. Louch & Susanne Pehrsson & Andrew Park , 2022. "Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:538:y:2016:i:7624:d:10.1038_nature19764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.