IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v537y2016i7619d10.1038_nature19344.html
   My bibliography  Save this article

Photocontrol of fluid slugs in liquid crystal polymer microactuators

Author

Listed:
  • Jiu-an Lv

    (State Key Laboratory of Molecular Engineering of Polymers, Fudan University)

  • Yuyun Liu

    (State Key Laboratory of Molecular Engineering of Polymers, Fudan University)

  • Jia Wei

    (State Key Laboratory of Molecular Engineering of Polymers, Fudan University)

  • Erqiang Chen

    (Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University)

  • Lang Qin

    (State Key Laboratory of Molecular Engineering of Polymers, Fudan University)

  • Yanlei Yu

    (State Key Laboratory of Molecular Engineering of Polymers, Fudan University)

Abstract

The manipulation of small amounts of liquids has applications ranging from biomedical devices to liquid transfer. Direct light-driven manipulation of liquids, especially when triggered by light-induced capillary forces, is of particular interest because light can provide contactless spatial and temporal control. However, existing light-driven technologies suffer from an inherent limitation in that liquid motion is strongly resisted by the effect of contact-line pinning. Here we report a strategy to manipulate fluid slugs by photo-induced asymmetric deformation of tubular microactuators, which induces capillary forces for liquid propulsion. Microactuators with various shapes (straight, ‘Y’-shaped, serpentine and helical) are fabricated from a mechanically robust linear liquid crystal polymer. These microactuators are able to exert photocontrol of a wide diversity of liquids over a long distance with controllable velocity and direction, and hence to mix multiphase liquids, to combine liquids and even to make liquids run uphill. We anticipate that this photodeformable microactuator will find use in micro-reactors, in laboratory-on-a-chip settings and in micro-optomechanical systems.

Suggested Citation

  • Jiu-an Lv & Yuyun Liu & Jia Wei & Erqiang Chen & Lang Qin & Yanlei Yu, 2016. "Photocontrol of fluid slugs in liquid crystal polymer microactuators," Nature, Nature, vol. 537(7619), pages 179-184, September.
  • Handle: RePEc:nat:nature:v:537:y:2016:i:7619:d:10.1038_nature19344
    DOI: 10.1038/nature19344
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19344
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaudia Dradrach & Michał Zmyślony & Zixuan Deng & Arri Priimagi & John Biggins & Piotr Wasylczyk, 2023. "Light-driven peristaltic pumping by an actuating splay-bend strip," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Sitong Li & Rui Zhang & Guanghao Zhang & Luyizheng Shuai & Wang Chang & Xiaoyu Hu & Min Zou & Xiang Zhou & Baigang An & Dong Qian & Zunfeng Liu, 2022. "Microfluidic manipulation by spiral hollow-fibre actuators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:537:y:2016:i:7619:d:10.1038_nature19344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.