IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v537y2016i7619d10.1038_nature19316.html
   My bibliography  Save this article

Cryo-EM structure of the spliceosome immediately after branching

Author

Listed:
  • Wojciech P. Galej

    (MRC Laboratory of Molecular Biology)

  • Max E. Wilkinson

    (MRC Laboratory of Molecular Biology)

  • Sebastian M. Fica

    (MRC Laboratory of Molecular Biology)

  • Chris Oubridge

    (MRC Laboratory of Molecular Biology)

  • Andrew J. Newman

    (MRC Laboratory of Molecular Biology)

  • Kiyoshi Nagai

    (MRC Laboratory of Molecular Biology)

Abstract

Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat–intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5′-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5′-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2′OH. The 5′-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson–Crick interactions between the branch helix and 5′-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.

Suggested Citation

  • Wojciech P. Galej & Max E. Wilkinson & Sebastian M. Fica & Chris Oubridge & Andrew J. Newman & Kiyoshi Nagai, 2016. "Cryo-EM structure of the spliceosome immediately after branching," Nature, Nature, vol. 537(7619), pages 197-201, September.
  • Handle: RePEc:nat:nature:v:537:y:2016:i:7619:d:10.1038_nature19316
    DOI: 10.1038/nature19316
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19316
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana Aupič & Jure Borišek & Sebastian M. Fica & Wojciech P. Galej & Alessandra Magistrato, 2023. "Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ahmed Moursy & Antoine Cléry & Stefan Gerhardy & Katharina M. Betz & Sanjana Rao & Jarosław Mazur & Sébastien Campagne & Irene Beusch & Malgorzata M. Duszczyk & Mark D. Robinson & Vikram Govind Panse , 2023. "RNA recognition by Npl3p reveals U2 snRNA-binding compatible with a chaperone role during splicing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Bangjun Zhou & Huihui Yu & Yong Xue & Mu Li & Chi Zhang & Bin Yu, 2024. "The spliceosome-associated protein CWC15 promotes miRNA biogenesis in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:537:y:2016:i:7619:d:10.1038_nature19316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.