IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v534y2016i7608d10.1038_nature17978.html
   My bibliography  Save this article

Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor

Author

Listed:
  • Shintaro Iwasaki

    (Center for RNA Systems Biology, University of California)

  • Stephen N. Floor

    (Center for RNA Systems Biology, University of California)

  • Nicholas T. Ingolia

    (Center for RNA Systems Biology, University of California)

Abstract

The cancer drug rocaglamide A cements the RNA helicase eIF4A on polypurine sequences and thereby prevents scanning of the 43S subunit along the messenger RNA, highlighting how a drug can act by stabilizing sequence-selective RNA–protein interactions.

Suggested Citation

  • Shintaro Iwasaki & Stephen N. Floor & Nicholas T. Ingolia, 2016. "Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor," Nature, Nature, vol. 534(7608), pages 558-561, June.
  • Handle: RePEc:nat:nature:v:534:y:2016:i:7608:d:10.1038_nature17978
    DOI: 10.1038/nature17978
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature17978
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature17978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yifei Gu & Yuanhui Mao & Longfei Jia & Leiming Dong & Shu-Bing Qian, 2021. "Bi-directional ribosome scanning controls the stringency of start codon selection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Ramona Weber & Leon Kleemann & Insa Hirschberg & Min-Yi Chung & Eugene Valkov & Cátia Igreja, 2022. "DAP5 enables main ORF translation on mRNAs with structured and uORF-containing 5′ leaders," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Fajin Li & Jianhuo Fang & Yifan Yu & Sijia Hao & Qin Zou & Qinglin Zeng & Xuerui Yang, 2023. "Reanalysis of ribosome profiling datasets reveals a function of rocaglamide A in perturbing the dynamics of translation elongation via eIF4A," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Chisa Shiraishi & Akinobu Matsumoto & Kazuya Ichihara & Taishi Yamamoto & Takeshi Yokoyama & Taisuke Mizoo & Atsushi Hatano & Masaki Matsumoto & Yoshikazu Tanaka & Eriko Matsuura-Suzuki & Shintaro Iwa, 2023. "RPL3L-containing ribosomes determine translation elongation dynamics required for cardiac function," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Kazuhiro Kashiwagi & Yuichi Shichino & Tatsuya Osaki & Ayako Sakamoto & Madoka Nishimoto & Mari Takahashi & Mari Mito & Friedemann Weber & Yoshiho Ikeuchi & Shintaro Iwasaki & Takuhiro Ito, 2021. "eIF2B-capturing viral protein NSs suppresses the integrated stress response," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Alla D. Fedorova & Stephen J. Kiniry & Dmitry E. Andreev & Jonathan M. Mudge & Pavel V. Baranov, 2022. "Thousands of human non-AUG extended proteoforms lack evidence of evolutionary selection among mammals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:534:y:2016:i:7608:d:10.1038_nature17978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.