IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v527y2015i7579d10.1038_nature15768.html
   My bibliography  Save this article

Type-II Weyl semimetals

Author

Listed:
  • Alexey A. Soluyanov

    (Theoretische Physik and Station Q Zurich, ETH Zurich)

  • Dominik Gresch

    (Theoretische Physik and Station Q Zurich, ETH Zurich)

  • Zhijun Wang

    (Princeton University, Princeton)

  • QuanSheng Wu

    (Theoretische Physik and Station Q Zurich, ETH Zurich)

  • Matthias Troyer

    (Theoretische Physik and Station Q Zurich, ETH Zurich)

  • Xi Dai

    (Institute of Physics, Chinese Academy of Sciences)

  • B. Andrei Bernevig

    (Princeton University, Princeton)

Abstract

A new type of topological semimetal is described, which contains so-called type-II Weyl fermions and has very different properties to standard Weyl semimetals, owing to the existence of an open Fermi surface rather than a point-like one in the vicinity of Weyl points; WTe2 is predicted to be one such semimetal.

Suggested Citation

  • Alexey A. Soluyanov & Dominik Gresch & Zhijun Wang & QuanSheng Wu & Matthias Troyer & Xi Dai & B. Andrei Bernevig, 2015. "Type-II Weyl semimetals," Nature, Nature, vol. 527(7579), pages 495-498, November.
  • Handle: RePEc:nat:nature:v:527:y:2015:i:7579:d:10.1038_nature15768
    DOI: 10.1038/nature15768
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15768
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jack Howard & Alexander Rodriguez & Neel Haldolaarachchige & Kalani Hettiarachchilage, 2023. "First Principles Computation of New Topological B 2 X 2 Zn ( X = Ir, Rh, Co) Compounds," J, MDPI, vol. 6(1), pages 1-12, February.
    2. Ye Yang & Fanghang Yu & Xikai Wen & Zhigang Gui & Yuqing Zhang & Fangyang Zhan & Rui Wang & Jianjun Ying & Xianhui Chen, 2023. "Pressure-induced transition from a Mott insulator to a ferromagnetic Weyl metal in La2O3Fe2Se2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Jae-Keun Kim & Kun-Rok Jeon & Pranava K. Sivakumar & Jaechun Jeon & Chris Koerner & Georg Woltersdorf & Stuart S. P. Parkin, 2024. "Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Feng, Suge & Zhong, Hua & Belić, Milivoj R. & Mihalache, Dumitru & Li, Yongdong & Zhang, Yiqi, 2024. "Bound-in-continuum-like corner states in the type-II Dirac photonic lattice," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Jiangang Yang & Xinwei Yi & Zhen Zhao & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Yuhan Ye & Jing-Yang You & Bo Gu & Shenjin Zhang & Fengfeng Zhang & Feng Yang & Zhimi, 2023. "Observation of flat band, Dirac nodal lines and topological surface states in Kagome superconductor CsTi3Bi5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Junchao Ma & Bin Cheng & Lin Li & Zipu Fan & Haimen Mu & Jiawei Lai & Xiaoming Song & Dehong Yang & Jinluo Cheng & Zhengfei Wang & Changgan Zeng & Dong Sun, 2022. "Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Sang Hyun Park & Michael Sammon & Eugene Mele & Tony Low, 2022. "Plasmonic gain in current biased tilted Dirac nodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Xiangye Liu & Pingting Zhang & Shiyao Wang & Yuqiang Fang & Penghui Wu & Yue Xiang & Jipeng Chen & Chendong Zhao & Xian Zhang & Wei Zhao & Junjie Wang & Fuqiang Huang & Cao Guan, 2024. "High intrinsic phase stability of ultrathin 2M WS2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Ji-Eun Lee & Aifeng Wang & Shuzhang Chen & Minseong Kwon & Jinwoong Hwang & Minhyun Cho & Ki-Hoon Son & Dong-Soo Han & Jun Woo Choi & Young Duck Kim & Sung-Kwan Mo & Cedomir Petrovic & Choongyu Hwang , 2024. "Spin-orbit-splitting-driven nonlinear Hall effect in NbIrTe4," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Qiangsheng Lu & P. V. Sreenivasa Reddy & Hoyeon Jeon & Alessandro R. Mazza & Matthew Brahlek & Weikang Wu & Shengyuan A. Yang & Jacob Cook & Clayton Conner & Xiaoqian Zhang & Amarnath Chakraborty & Yu, 2024. "Realization of a two-dimensional Weyl semimetal and topological Fermi strings," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Xianyang Lu & Zhiyong Lin & Hanqi Pi & Tan Zhang & Guanqi Li & Yuting Gong & Yu Yan & Xuezhong Ruan & Yao Li & Hui Zhang & Lin Li & Liang He & Jing Wu & Rong Zhang & Hongming Weng & Changgan Zeng & Yo, 2024. "Ultrafast magnetization enhancement via the dynamic spin-filter effect of type-II Weyl nodes in a kagome ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Yu Pan & Bin He & Toni Helm & Dong Chen & Walter Schnelle & Claudia Felser, 2022. "Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Wei-Chi Chiu & Guoqing Chang & Gennevieve Macam & Ilya Belopolski & Shin-Ming Huang & Robert Markiewicz & Jia-Xin Yin & Zi-Jia Cheng & Chi-Cheng Lee & Tay-Rong Chang & Feng-Chuan Chuang & Su-Yang Xu &, 2023. "Causal structure of interacting Weyl fermions in condensed matter systems," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Cong Li & Jianfeng Zhang & Yang Wang & Hongxiong Liu & Qinda Guo & Emile Rienks & Wanyu Chen & Francois Bertran & Huancheng Yang & Dibya Phuyal & Hanna Fedderwitz & Balasubramanian Thiagarajan & Macie, 2023. "Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:527:y:2015:i:7579:d:10.1038_nature15768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.