IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v526y2015i7574d10.1038_nature15377.html
   My bibliography  Save this article

Dynamic m6A mRNA methylation directs translational control of heat shock response

Author

Listed:
  • Jun Zhou

    (Cornell University)

  • Ji Wan

    (Cornell University)

  • Xiangwei Gao

    (Cornell University)

  • Xingqian Zhang

    (Cornell University)

  • Samie R. Jaffrey

    (Weill Cornell Medical College, Cornell University)

  • Shu-Bing Qian

    (Cornell University)

Abstract

Under stress, such as heat shock, the N6-methyladenosine (m6A) modification is shown to accumulate primarily in the 5′ untranslated region of induced mRNAs owing to the translocation of an m6A interacting protein, YTHDF2, into the nucleus, resulting in increased cap-independent translation of these mRNAs, indicating one possible mechanism by which stress-responsive genes can be preferentially expressed.

Suggested Citation

  • Jun Zhou & Ji Wan & Xiangwei Gao & Xingqian Zhang & Samie R. Jaffrey & Shu-Bing Qian, 2015. "Dynamic m6A mRNA methylation directs translational control of heat shock response," Nature, Nature, vol. 526(7574), pages 591-594, October.
  • Handle: RePEc:nat:nature:v:526:y:2015:i:7574:d:10.1038_nature15377
    DOI: 10.1038/nature15377
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15377
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanpei Li & Xiaoniu He & Xiao Lu & Zhicheng Gong & Qing Li & Lei Zhang & Ronghui Yang & Chengyi Wu & Jialiang Huang & Jiancheng Ding & Yaohui He & Wen Liu & Ceshi Chen & Bin Cao & Dawang Zhou & Yufen, 2022. "METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Debjit Khan & Iyappan Ramachandiran & Kommireddy Vasu & Arnab China & Krishnendu Khan & Fabio Cumbo & Dalia Halawani & Fulvia Terenzi & Isaac Zin & Briana Long & Gregory Costain & Susan Blaser & Amand, 2024. "Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m6A site accessibility," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Haiyan Zhang & Xiaojing Luo & Wei Yang & Zhiying Wu & Zhicong Zhao & Xin Pei & Xue Zhang & Chonghao Chen & Josh Haipeng Lei & Qingxia Shi & Qi Zhao & Yanxing Chen & Wenwei Wu & Zhaolei Zeng & Huai-Qia, 2024. "YTHDF2 upregulation and subcellular localization dictate CD8 T cell polyfunctionality in anti-tumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Alexandra E. Perlegos & Emily J. Shields & Hui Shen & Kathy Fange Liu & Nancy M. Bonini, 2022. "Mettl3-dependent m6A modification attenuates the brain stress response in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Yifei Gu & Yuanhui Mao & Longfei Jia & Leiming Dong & Shu-Bing Qian, 2021. "Bi-directional ribosome scanning controls the stringency of start codon selection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Sujun Yan & Xiaoling Zhou & Canlan Wu & Yunyi Gao & Yu Qian & Jingyu Hou & Renxiang Xie & Bing Han & Zhanghui Chen & Saisai Wei & Xiangwei Gao, 2023. "Adipocyte YTH N(6)-methyladenosine RNA-binding protein 1 protects against obesity by promoting white adipose tissue beiging in male mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Mykola Roiuk & Marilena Neff & Aurelio A. Teleman, 2024. "eIF4E-independent translation is largely eIF3d-dependent," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. WeiChao Hao & MeiJuan Dian & Ying Zhou & QiuLing Zhong & WenQian Pang & ZiJian Li & YaYan Zhao & JiaCheng Ma & XiaoLin Lin & RenRu Luo & YongLong Li & JunShuang Jia & HongFen Shen & ShiHao Huang & Gua, 2022. "Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    9. Lei Shen & Xiaokuang Ma & Yuanyuan Wang & Zhihao Wang & Yi Zhang & Hoang Quoc Hai Pham & Xiaoqun Tao & Yuehua Cui & Jing Wei & Dimitri Lin & Tharindumala Abeywanada & Swanand Hardikar & Levon Halabeli, 2024. "Loss-of-function mutation in PRMT9 causes abnormal synapse development by dysregulation of RNA alternative splicing," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:526:y:2015:i:7574:d:10.1038_nature15377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.