IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v526y2015i7572d10.1038_nature15400.html
   My bibliography  Save this article

SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef

Author

Listed:
  • Yoshiko Usami

    (Cell and Cancer Biology, University of Massachusetts Medical School)

  • Yuanfei Wu

    (Cell and Cancer Biology, University of Massachusetts Medical School)

  • Heinrich G. Göttlinger

    (Cell and Cancer Biology, University of Massachusetts Medical School)

Abstract

HIV-1 Nef and the unrelated mouse leukaemia virus glycosylated Gag (glycoGag) strongly enhance the infectivity of HIV-1 virions produced in certain cell types in a clathrin-dependent manner. Here we show that Nef and glycoGag prevent the incorporation of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and SERINC5 into HIV-1 virions to an extent that correlates with infectivity enhancement. Silencing of both SERINC3 and SERINC5 precisely phenocopied the effects of Nef and glycoGag on HIV-1 infectivity. The infectivity of nef-deficient virions increased more than 100-fold when produced in double-knockout human CD4+ T cells that lack both SERINC3 and SERINC5, and re-expression experiments confirmed that the absence of SERINC3 and SERINC5 accounted for the infectivity enhancement. Furthermore, SERINC3 and SERINC5 together restricted HIV-1 replication, and this restriction was evaded by Nef. SERINC3 and SERINC5 are highly expressed in primary human HIV-1 target cells, and inhibiting their downregulation by Nef is a potential strategy to combat HIV/AIDS.

Suggested Citation

  • Yoshiko Usami & Yuanfei Wu & Heinrich G. Göttlinger, 2015. "SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef," Nature, Nature, vol. 526(7572), pages 218-223, October.
  • Handle: RePEc:nat:nature:v:526:y:2015:i:7572:d:10.1038_nature15400
    DOI: 10.1038/nature15400
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15400
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susan A. Leonhardt & Michael D. Purdy & Jonathan R. Grover & Ziwei Yang & Sandra Poulos & William E. McIntire & Elizabeth A. Tatham & Satchal K. Erramilli & Kamil Nosol & Kin Kui Lai & Shilei Ding & M, 2023. "Antiviral HIV-1 SERINC restriction factors disrupt virus membrane asymmetry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Uddhav Timilsina & Supawadee Umthong & Emily B. Ivey & Brandon Waxman & Spyridon Stavrou, 2022. "SARS-CoV-2 ORF7a potently inhibits the antiviral effect of the host factor SERINC5," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Sunan Li & Rongrong Li & Iqbal Ahmad & Xiaomeng Liu & Silas F. Johnson & Liangliang Sun & Yong-Hui Zheng, 2022. "Cul3-KLHL20 E3 ubiquitin ligase plays a key role in the arms race between HIV-1 Nef and host SERINC5 restriction," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:526:y:2015:i:7572:d:10.1038_nature15400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.