IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v525y2015i7567d10.1038_nature14683.html
   My bibliography  Save this article

Structural insights into the bacterial carbon–phosphorus lyase machinery

Author

Listed:
  • Paulina Seweryn

    (Aarhus University)

  • Lan Bich Van

    (Aarhus University)

  • Morten Kjeldgaard

    (Aarhus University)

  • Christopher J. Russo

    (Medical Research Council Laboratory of Molecular Biology)

  • Lori A. Passmore

    (Medical Research Council Laboratory of Molecular Biology)

  • Bjarne Hove-Jensen

    (Aarhus University)

  • Bjarne Jochimsen

    (Aarhus University)

  • Ditlev E. Brodersen

    (Aarhus University)

Abstract

Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon–phosphorus (C–P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C–P lyase core complex (PhnG–PhnH–PhnI–PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C–P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.

Suggested Citation

  • Paulina Seweryn & Lan Bich Van & Morten Kjeldgaard & Christopher J. Russo & Lori A. Passmore & Bjarne Hove-Jensen & Bjarne Jochimsen & Ditlev E. Brodersen, 2015. "Structural insights into the bacterial carbon–phosphorus lyase machinery," Nature, Nature, vol. 525(7567), pages 68-72, September.
  • Handle: RePEc:nat:nature:v:525:y:2015:i:7567:d:10.1038_nature14683
    DOI: 10.1038/nature14683
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14683
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Zhang & Lu Jia & Yuchen Chen & Hanlu Yan & Qiuwen Chen & Jianmin Zhang & Hao Sun, 2024. "Molecular Mechanisms of the Cyanobacterial Response to Different Phosphorus Sources," Sustainability, MDPI, vol. 16(13), pages 1-14, July.
    2. Dingyi Wang & Mingjie Li & Chengdong Shuang & Yong Liang & Yue Zhao & Minyan Wang & Zhuangzhi Shi, 2022. "Rhodium-catalyzed selective direct arylation of phosphines with aryl bromides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Søren K. Amstrup & Sui Ching Ong & Nicholas Sofos & Jesper L. Karlsen & Ragnhild B. Skjerning & Thomas Boesen & Jan J. Enghild & Bjarne Hove-Jensen & Ditlev E. Brodersen, 2023. "Structural remodelling of the carbon–phosphorus lyase machinery by a dual ABC ATPase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Michael C. Gilmore & Felipe Cava, 2022. "Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Leandro Israel da Silva & Marlon Correa Pereira & André Mundstock Xavier de Carvalho & Victor Hugo Buttrós & Moacir Pasqual & Joyce Dória, 2023. "Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture," Agriculture, MDPI, vol. 13(2), pages 1-30, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:525:y:2015:i:7567:d:10.1038_nature14683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.