IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v524y2015i7564d10.1038_nature14580.html
   My bibliography  Save this article

Genetic compensation induced by deleterious mutations but not gene knockdowns

Author

Listed:
  • Andrea Rossi

    (Max Planck Institute for Heart and Lung Research)

  • Zacharias Kontarakis

    (Max Planck Institute for Heart and Lung Research)

  • Claudia Gerri

    (Max Planck Institute for Heart and Lung Research)

  • Hendrik Nolte

    (Max Planck Institute for Heart and Lung Research
    † Present address: Institute for Genetics and CECAD, University of Cologne, 50931 Cologne, Germany)

  • Soraya Hölper

    (Max Planck Institute for Heart and Lung Research)

  • Marcus Krüger

    (Max Planck Institute for Heart and Lung Research
    † Present address: Institute for Genetics and CECAD, University of Cologne, 50931 Cologne, Germany)

  • Didier Y. R. Stainier

    (Max Planck Institute for Heart and Lung Research)

Abstract

Zebrafish embryos injected with egfl7 morpholino exhibit severe vascular defects but egfl7 mutants do not show any obvious phenotypes, illustrating the power of comparing mutants and morphants to identify modifier genes.

Suggested Citation

  • Andrea Rossi & Zacharias Kontarakis & Claudia Gerri & Hendrik Nolte & Soraya Hölper & Marcus Krüger & Didier Y. R. Stainier, 2015. "Genetic compensation induced by deleterious mutations but not gene knockdowns," Nature, Nature, vol. 524(7564), pages 230-233, August.
  • Handle: RePEc:nat:nature:v:524:y:2015:i:7564:d:10.1038_nature14580
    DOI: 10.1038/nature14580
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14580
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee B. Miles & Vanessa Calcinotto & Sara Oveissi & Rita J. Serrano & Carmen Sonntag & Orlen Mulia & Clara Lee & Robert J. Bryson-Richardson, 2024. "CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Federica Diofano & Karolina Weinmann & Isabelle Schneider & Kevin D Thiessen & Wolfgang Rottbauer & Steffen Just, 2020. "Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-24, November.
    4. Paul W. Chrystal & Nils J. Lambacher & Lance P. Doucette & James Bellingham & Elena R. Schiff & Nicole C. L. Noel & Chunmei Li & Sofia Tsiropoulou & Geoffrey A. Casey & Yi Zhai & Nathan J. Nadolski & , 2022. "The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    5. Valentina Cigliola & Adam Shoffner & Nutishia Lee & Jianhong Ou & Trevor J. Gonzalez & Jiaul Hoque & Clayton J. Becker & Yanchao Han & Grace Shen & Timothy D. Faw & Muhammad M. Abd-El-Barr & Shyni Var, 2023. "Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Karthika Devi Kiran Kumar & Shubhangi Singh & Stella Maria Schmelzle & Paul Vogel & Carolin Fruhner & Alfred Hanswillemenke & Adrian Brun & Jacqueline Wettengel & Yvonne Füll & Lukas Funk & Valentin M, 2024. "An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Jingying Chen & Jing Ding & Yongyu Li & Fujuan Feng & Yuhang Xu & Tao Wang & Jianbo He & Jing Cang & Lingfei Luo, 2024. "Epidermal growth factor-like domain 7 drives brain lymphatic endothelial cell development through integrin αvβ3," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7564:d:10.1038_nature14580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.