IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v524y2015i7563d10.1038_nature14615.html
   My bibliography  Save this article

Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds

Author

Listed:
  • Liana Hie

    (University of California)

  • Noah F. Fine Nathel

    (University of California)

  • Tejas K. Shah

    (University of California)

  • Emma L. Baker

    (University of California)

  • Xin Hong

    (University of California)

  • Yun-Fang Yang

    (University of California)

  • Peng Liu

    (University of California)

  • K. N. Houk

    (University of California)

  • Neil K. Garg

    (University of California)

Abstract

Although enzymes are able to cleave amide bonds in nature, it is difficult to selectively break the carbon–nitrogen bond of an amide using synthetic chemistry; now the activation and cleavage of these bonds using nickel catalysts is used to convert amides to esters.

Suggested Citation

  • Liana Hie & Noah F. Fine Nathel & Tejas K. Shah & Emma L. Baker & Xin Hong & Yun-Fang Yang & Peng Liu & K. N. Houk & Neil K. Garg, 2015. "Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds," Nature, Nature, vol. 524(7563), pages 79-83, August.
  • Handle: RePEc:nat:nature:v:524:y:2015:i:7563:d:10.1038_nature14615
    DOI: 10.1038/nature14615
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14615
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyu Zhong & Dominic T. Egger & Valentina C. M. Gasser & Patrick Finkelstein & Loris Keim & Merlin Z. Seidel & Nils Trapp & Bill Morandi, 2023. "Skeletal metalation of lactams through a carbonyl-to-nickel-exchange logic," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yuxing Cai & Yuxin Zhao & Kai Tang & Hong Zhang & Xueling Mo & Jiean Chen & Yong Huang, 2024. "Amide C–N bonds activation by A new variant of bifunctional N-heterocyclic carbene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7563:d:10.1038_nature14615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.